[1] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104 (10):4303-4417.
[2] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114 (23):11503.
[3] MA G Q, JING Z M, CHEN H C, et al. Research process on novel electrolyte of lithium-ion battery based on lithium salts[J]. Journal of Inorganic Materials, 2018, 33 (7):699-710.
[4] CHEN R, QU W, GUO X, et al. The pursuit of solid state electrolytes for lithium batteries:From comprehensive insight to emerging horizons[J]. Materials Horizons, 2016, 3 (6):487-516.
[5] TAN S, JI Y J, ZHANG Z R, et al. Recent progress in research on high-voltage electrolytes for lithium-ion batteries.[J]. ChemPhys Chem. 2014, 15 (10):1956-1969.
[6] 廖红英, 程宝英, 郝志强. 锂离子电池电解液[J]. 新材料产业, 2003 (9):34-37. LIAO H Y, CHENG B Y, HAO Z Q. Electrolyte for lithium ion batteries[J]. New Materials Industry, 2003 (9):34-37.
[7] ALVARADO J, SCHROEDER M A, ZHANG M, et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries[J]. Materials Today, 2018, 21 (4):341-353.
[8] LI X, ZHENG J M, ENGELHARD M, et al. Effects of imide-orthoborate dual-salt mixtures in organic carbonate electrolytes on the stability of lithium metal batteries.[J]. ACS Applied Materials & Interfaces, 2018, 10 (3):2469-2479.
[9] MA L, ELLIS L, GLAZIER S L, et al. LiPO2F2 as an electrolyte additive in Li[Ni0.5Mn0.3Co0.2]O2/graphite pouch cells[J]. Journal of the Electrochemical Society, 2018, 165 (5):A891-A899.
[10] LI S Y, LI X P, LIU J L, et al. A low-temperature electrolyte for lithium-ion batteries[J]. Ionics, 2015, 21 (4):901-907.
[11] WANG J H, YAMADA Y K, SODEYAMA K A, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2017, 3 (1):doi:10.1038/s41560-017-0033-8.
[12] ZENG Z Q, MURUGESAN V, HAN K S et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 3 (8):674-681.
[13] 李放放, 陈仕谋. 高压锂离子电池电解液添加剂研究进展[J]. 储能科学与技术, 2016, 5 (4):436-442. LI F F, CHEN S M. Research progress on electrolyte additives for high voltage lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5 (4):436-442.
[14] FAN J T, DONG T, ZHANG L, et al. Advances on high-voltage electrolyte of lithium ion batteries (in Chinese)[J]. The Chinese Journal of Process Engineering, 2018, doi:10.12034/j.issn.1009-606X.218133.
[15] CHEN S M, WEN K H, FAN J T, et al. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries:From liquid to solid electrolytes[J]. Journal of Materials Chemistry A, 2018, 6 (25):11631-11663.
[16] MA G, WANG L, ZHANG J, et al. Lithium-ion battery electrolyte containing fluorinated solvent and additive[J]. Progress in Chemistry, 2016, 28 (9):1299-1312.
[17] LIAO B, LI H, XU M, et al. Designing low impedance interface films simultaneously on anode and cathode for high energy batteries[J]. Advanced Energy Materials, 2018, 8 (22):doi:10.1002/aenm.201800802.
[18] TU W, YE C, YANG X, et al. Trimethylsilylcyclopentadiene as a novel electrolyte additive for high temperature application of lithium nickel manganese oxide cathode[J]. Journal of Power Sources, 2017, 364:23-32.
[19] WANG Z N, GAI Y J, DONG T, et al. Triethylbutylammonium bis (trifluoromethanes-ulhonyl)imide ionic liquid; as an effective electrolyte additive for Li-ion batteries[J]. Ionics, 2013, 19 (6):887-894.
[20] YAMADA Y, FURUKAWA K, SODEYAMA K, et al Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136 (13):5039-5046. |