Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (3): 762-775.doi: 10.19799/j.cnki.2095-4239.2020.0151
Previous Articles Next Articles
JIN Zhou(), ZHANG Hua, TIAN Mengyu, JI Hongxiang, TIAN Feng, QI Wenbin, WU Yida, ZHAN Yuanjie, YAN Yong, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie()
Received:
2020-04-20
Online:
2020-05-05
Published:
2020-05-11
Contact:
Xuejie HUANG
E-mail:jinzhou15@mails.ucas.ac.cn;xjhuang@iphy. ac.cn
CLC Number:
JIN Zhou, ZHANG Hua, TIAN Mengyu, JI Hongxiang, TIAN Feng, QI Wenbin, WU Yida, ZHAN Yuanjie, YAN Yong, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie.
[J]. Energy Storage Science and Technology, 2020, 9(3): 762-775.
Reviews of selected 100 recent papers for lithium batteries(Feb. 01, 2020 to Mar. 31, 2020)
1 | FENG Z , HUANG X , RAJAGOPALAN R , et al . Enhanced electrochemical properties of LiNi0.8Co0.1Mn0.1O2 at elevated temperature by simultaneous structure and interface regulating[J]. Journal of the Electrochemical Society, 2019, 166(8): A1439-A1448. |
2 | YASMIN A , SHEHZAD M A , DING X , et al . A first report on ex-situ synthesis and utilization of pure La4NiLiO8 in emerging high-performance safe batteries[J]. Journal of Alloys and Compounds, 2020, 821: doi: 10.1016/j.jallcom.2019.153208. |
3 | XU G L , LIU Q , LAU K K S, et al . Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes[J]. Nature Energy, 2019, 4(6): 484-494. |
4 |
KIM J , LEE J, BAE C, et al . Sublimation-induced gas-reacting process for high energy density Ni-rich electrode materials[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.0c00038 .
doi: 10.1021/acsami.0c00038 |
5 | CHENG X , LIU M , YIN J , et al . Regulating surface and grain-boundary structures of Ni-rich layered cathodes for ultrahigh cycle stability[J]. Small, 2020: e1906433-e1906433. |
6 | GU W , DONG Q , ZHENG L , et al . Ambient air stable Ni-rich layered oxides enabled by hydrophobic self-assembled monolayer[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1937-1943. |
7 | LI J , CHANG C H , MANTHIRAM A . Toward long-life, ultrahigh-nickel layered oxide cathodes for lithium-ion batteries: Optimizing the interphase chemistry with a dual-functional polymer[J]. Chemistry of Materials, 2020, 32(2): 759-768. |
8 | AISHOVA A , PARK G T , YOON C S , et al . Cobalt-free high-capacity Ni-rich layered Li[Ni0.9Mn0.1]O2 cathode[J]. Advanced Energy Materials, 2020, 10(4): doi: 10.1002/aenm.201903179. |
9 | YANG W , XIANG W , CHEN Y X , et al . Interfacial regulation of Ni-rich cathode materials with an ion-conductive and pillaring layer by infusing gradient boron for improved cycle stability[J]. ACS Applied Materials & Interfaces, 2020. 12(9): 10240-10251. |
10 | YOON M , DONG Y , YOO Y, et al . Unveiling nickel chemistry in stabilizing high-voltage cobalt-rich cathodes for lithium-ion batteries[J]. Advanced Functional Materials, 2020, 30(6): doi: 10.1002/adfm.201907903. |
11 | MU L , KAN W H , KUAI C , et al . Structural and electrochemical impacts of Mg/Mn dual dopants on the LiNiO2 cathode in Li-metal batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12874-12882. |
12 |
JI H , WU J , CAI Z , et al . Ultrahigh power and energy density in partially ordered lithium-ion cathode materials[J]. Nature Energy, 2020, doi: 10.1038/s41560-020-0573-1 .
doi: 10.1038/s41560-020-0573-1 |
13 | SANEIFAR H , ZAGHIB K , BELANGER D . Crown ether functionalized conductive carbon for high-voltage spinel LiMn1.5Ni0.5O4/graphite cell[J]. ACS Applied Energy Materials, 2020, 3(1): 647-657. |
14 |
TIURIN O , SOLOMATIN N , AUINAT M , et al . Atomic layer deposition (ALD) of lithium fluoride (LiF) protective film on Li-ion battery LiMn1.5Ni0.5O4 cathode powder material[J]. Journal of Power Sources, 2020, doi: 10.3390/inorganics6020046 .
doi: 10.3390/inorganics6020046 |
15 | GU T , WANG J , TIAN J H , et al . Phosphorus and boron co-doped carbon coating of LiNi0.5Mn1.5O4 cathodes for advanced lithium-ion batteries[J]. Chemelectrochem, 2019. 6(8): 2224-2230. |
16 |
DAI G , GAO Y , NIU Z , et al . Dilution of the electron density in the Pi-conjugated skeleton of organic cathode materials improves the discharge voltage[J]. Chemsuschem, 2020, doi: 10.1002/cssc.201903502 .
doi: 10.1002/cssc.201903502 |
17 | LI H , CHAO D , CHEN B , et al . Revealing principles for design of lean-electrolyte lithium metal anode via in situ spectroscopy[J]. Journal of the American Chemical Society, 2020, 142(4): 2012-2022. |
18 | NIU C , PAN H , XU W , et al . Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions[J]. Nature Nanotechnology, 2019. 14(6): doi: 10.1038/s41565-019-0427-9. |
19 | GALLUZZO M D , HALAT D M , LOO W S, et al . Dissolution of lithium metal in poly(ethylene oxide)[J]. ACS Energy Letters, 2019, 4(4): 903-907. |
20 | GAO Y , GUO M , YUAN K , et al . Multifunctional silanization interface for high-energy and low-gassing lithium metal pouch cells[J]. Advanced Energy Materials, 2020, 10(4): 10.1002/aenm.201903362. |
21 |
HUANG Y , CHEN B , DUAN J , et al . Graphitic carbon nitride (g-C3N4): An interface enabler for solid-state lithium metal batteries[J]. Angewandte Chemie-International Edition, 2020, doi: 10.1002/anie.201914417 .
doi: 10.1002/anie.201914417 |
22 | JIE Y, LIU X , LEI Z , et al . Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte[J]. Angewandte Chemie-International Edition, 2020., 59(9): 3505-3510. |
23 | ISHIKAWA K , HARADA S , TAGAWA M , et al . Effect of crystal orientation of Cu current collectors on cycling stability of Li metal anodes[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9341-9346. |
24 | JIA H , LI X , SONG J , et al . Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-15217-9. |
25 | ZHANG J , HOU X Z , TANG J , et al . Phosphoric acid induced homogeneous crosslinked phosphorus doped porous Si nanoparticles with superior lithium storage performance[J]. Applied Surface Science, 2020, 509: doi: 10.1039/C1JM12857D. |
26 | NAZIR A , LE H T T , MIN C W , et al . Coupling of a conductive Ni-3(2,3,6,7,10,11-hexaiminotriphenylene)(2) metal-organic framework with silicon nanoparticles for use in high-capacity lithium-ion batteries[J]. Nanoscale, 2020, 12(3): 1629-1642. |
27 | MA L , MENG J , PAN Y , et al . Microporous binder for the silicon-based lithium-ion battery anode with exceptional rate capability and improved cyclic performance[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2020, 36(8): 2003-2011. |
28 | WANG Y , SATOH M , ARAO M , et al . High-energy, long-cycle-life secondary battery with electrochemically pre-doped silicon anode[J]. Scientific Reports, 2020, 10(1): doi: 10.1038/s41598-020-59913-4. |
29 | DOHERTY J , MCNULTY D , BISWAS S , et al . Germanium tin alloy nanowires as anode materials for high performance Li-ion batteries[J]. Nanotechnology, 2020, 31(16): 165402. |
30 | DUBEY R J C , SASIKUMAR P V W , KRUMEICH F , et al . Silicon oxycarbide-Tin nanocomposite as a high-power-density anode for Li-ion batteries[J]. Advanced Science, 2019, 6(19): doi: 10.1002/advs.201901220. |
31 | HAN B , ZHANG W , GAO D , et al . Encapsulating tin oxide nanoparticles into holey carbon nanotubes by melt infiltration for superior lithium and sodium ion storage[J]. Journal of Power Sources, 2020, 449: doi: 10.1016/j.jpowsour.2019.227564. |
32 | HARPAK N , DAVIDI G , MELAMED Y , et al . Self-catalyzed vertically aligned carbon nanotube-silicon core-shell array for highly stable, high-capacity lithium-ion batteries[J]. Langmuir, 2020, 36(4): 889-896. |
33 | LI Y , OU C, ZHU J , et al . Ultrahigh and durable volumetric lithium/sodium storage enabled by a highly dense graphene-encapsulated nitrogen-doped carbon@Sn compact monolith[J]. Nano Letters, 2020, 20(3): 2034-2046. |
34 | ADAMS R A , MISTRY A N , MUKHERJEE P P , et al . Materials by design: Tailored morphology and structures of carbon anodes for enhanced battery safety[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13334-13342. |
35 |
ARAYAMPARAMBIL J J , CHEN K , IADECOLA A , et al . Reversible high capacity and reaction mechanism of Cr2(NCN)3 negative electrodes for Li-ion batteries[J]. Energy Technology, 2020, doi: 10.1002/ente.201901260 .
doi: 10.1002/ente.201901260 |
36 |
YANG Y , ZHU H , XIAO J , et al . Achieving ultrahigh-rate and high-safety Li+ storage based on interconnected tunnel structure in micro-size niobium tungsten oxides[J]. Advanced Materials, 2020, doi: 2020.10.1002/adma.201905295 .
doi: 2020.10.1002/adma.201905295 |
37 | HU R , QIU H , ZHANG H , et al . A polymer-reinforced SEI layer induced by a cyclic carbonate-based polymer electrolyte boosting 4.45 V LiCoO2/Li metal batteries[J]. Small, 2020: e1907163-e1907163. |
38 | CHEN J , YANG Z , LIU G , et al . Reinforcing concentrated phosphate electrolytes with in-situ polymerized skeletons for robust quasi-solid lithium metal batteries[J]. Energy Storage Materials, 2020, 25: 305-312. |
39 | ALDALUR I , WANG X , SANTIAGO A , et al . Nanofiber-reinforced polymer electrolytes toward room temperature solid-state lithium batteries[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2020.28236. |
40 |
KAUP K , BAZAK J D , VAJARGAH S H , et al . A lithium oxythioborosilicate solid electrolyte glass with superionic conductivity[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.201902783 .
doi: 10.1002/aenm.201902783 |
41 | CHOI S , JEON M , JUNG W D , et al . Robust solid-state interface with a deformable glass interlayer in sulfide-based all-solid-state batteries[J]. Solid State Ionics, 2020, 346: doi: 10.1016/j.ssi.2019.115217. |
42 | INDRAWAN R F , YAMAMOTO T , PHUC N HUU HUY , et al . Liquid-phase synthesis of 100Li3PS4-50Li1- x Li3PO4 solid electrolytes[J]. Solid State Ionics, 2020, 345: doi: 10.1016/j.ssi.2019.115184. |
43 | PARK K H , KAUP K , ASSOUD A , et al . High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries[J]. ACS Energy Letters, 2020, 5(2): 533-539. |
44 | ZHOU Q , DONG S , LV Z , et al . A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries[J]. Advanced Energy Materials, 2020, 10(6): doi: 10.1002/aenm.201903441. |
45 | MATSUDA R , KOKUBO T , NGUYEN H H , et al . Preparation of ambient air-stable electrolyte Li4SnS4 by aqueous ion-exchange process[J]. Solid State Ionics, 2020, 345: doi: 10.1016/j.ssi.2019.115190. |
46 | DUCHENE L , KIM D H , SONG Y B , et al . Crystallization of closo-borate electrolytes from solution enabling infiltration into slurry-casted porous electrodes for all-solid-state batteries[J]. Energy Storage Materials, 2020, 26: 543-549. |
47 | SUN Y Y , HOU P Y , ZHANG L C . Mitigating the microcracks of high-Ni oxides by insitu formation of binder between anisotropic grains for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 13923-13930. |
48 | HAN J G , JEONG M Y , KIM K , et al . An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes[J]. Journal of Power Sources, 2020, 446: doi: 10.1016/j.jpowsour.2019.227366. |
49 | LIU L , GAO W , CUI Y , et al . A bifunctional additive bi(4-flurorophenyl) sulfone for enhancing the stability and safety of nickel-rich cathode based cells[J]. Journal of Alloys and Compounds, 2020, 820: doi: 10.1016/j.jallcom.2019.153069. |
50 | KIM K , HWANG D , KIM S , et al . Cyclic aminosilane-based additive ensuring stable electrode-electrolyte interfaces in Li-ion batteries[J]. Advanced Energy Materials, 2020: doi: 10.1002/aenm.202000012. |
51 | MARKEVICH E , SALITRA G , AFRI M , et al . Improved performance of Li-metal vertical bar LiNi0.8Co0.1Mn0.1O2 cells with high-loading cathodes and small amounts of electrolyte solutions containing fluorinated carbonates at 30 degrees C-55 degrees C[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab67a1. |
52 | YANG J , SHKROB I , LIU K , et al . 4-(trimethylsilyl) morpholine as a multifunctional electrolyte additive in high voltage lithium ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab7a9e. |
53 | ZHENG Q , YAMADA Y , SHANG R , et al . A cyclic phosphate-based battery electrolyte for high voltage and safe operation[J]. Nature Energy, 2020: 291-298. |
54 | JONES J P , SMART M C , KRAUSE F C , et al . The effect of electrolyte additives upon lithium plating during low temperature charging of graphite-LiNiCoAlO2 lithium-ion three electrode cells[J]. Journal of the Electrochemical Society, 2020, 167(2): doi: 10.1149/1945-711/ab6bc2. |
55 | PHAM H Q , CHUNG G J , HAN J , et al . Interface stabilization via lithium bis(fluorosulfonyl)imide additive as a key for promoted performance of graphite parallel to LiCoO2 pouch cell under-20 degrees C[J]. Journal of Chemical Physics, 2020, 152(9): doi: 10.1063/1.5144280. |
56 | DAI W , DONG N , XIA Y , et al . Localized concentrated high-concentration electrolyte enhanced stability and safety for high voltage Li-ion batteries[J]. Electrochimica Acta, 2019, 320: doi: 10.1016/j.electacta.2019.134633. |
57 | QIAN Y , KANG Y , HU S , et al . Mechanism study of unsaturated tripropargyl phosphate as an efficient electrolyte additive forming multifunctional interphases in lithium ion and lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10443-10451. |
58 | ZHANG J , SHKROB I A , ASSARY R S , et al . An extremely durable redox shuttle additive for overcharge protection of lithium-ion batteries[J]. Materials Today Energy, 2019, 13: 308-311. |
59 | HU Z , ZHAO L , JIANG T , et al . Trifluoropropylene carbonate-driven interface regulation enabling greatly enhanced lithium storage durability of silicon-based anodes[J]. Advanced Functional Materials, 2019, 29(45): doi: 10.1002/adfm.201906548. |
60 | FU Y , WU Z , YUAN Y , et al . Switchable encapsulation of polysulfides in the transition between sulfur and lithium sulfide[J]. Nature Communications, 2020, 11(1): 845-845. |
61 |
WANG Z , QI F , YIN L , et al . An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.201903843 .
doi: 10.1002/aenm.201903843 |
62 | HIRATA K , KAWASE T , SUMIDA Y . Electrode/electrolyte interface study of LiCoO2/graphite cell using carbonate-free electrolytes based on lithium bis(fluorosulfonyl)imide and sulfolane[J]. Journal of the Electrochemical Society, 2020, 167(2): doi: 10.1149/1945-7111/ ab68ca. |
63 | SAKUDA A , SATO Y , HAYASHI A , et al . Sulfur-based composite electrode with interconnected mesoporous carbon for all-solid-state lithium-sulfur batteries[J]. Energy Technology, 2019, 7(12): doi: 10.1002/ente.201900077. |
64 | TAKEUCHI T , KOJIMA T , KAGEYAMA H , et al . All-solid-state lithium-sulfur batteries using sulfurized alcohol composite material with improved coulomb efficiency[J]. Energy Technology, 2019, 7(12): doi: 10.1002/ente.201900509. |
65 | XU R , YUE J , LIU S , et al . Cathode-supported all-solid-state lithium-sulfur batteries with high cell-level energy density[J]. ACS Energy Letters, 2019, 4(5): doi: 10.1021/acsenergylett.9b00430. |
66 | YAN H , WANG H , WANG D , et al . In situ generated Li2S-C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading[J]. Nano Letters, 2019, 19(5): 3280-3287. |
67 | JUNG S H , KIM U H , KIM J H , et al . Ni-rich layered cathode materials with electrochemo-mechanically compliant microstructures for all-solid-state Li batteries[J]. Advanced Energy Materials, 2020, 10(6): doi: 10.1002/aenm.201903360. |
68 | GAO X , YANG X , ADAIR K , et al . 3D vertically aligned Li metal anodes with ultrahigh cycling currents and capacities of 10 mA/cm2/20 mA·h/cm2 realized by selective nucleation within microchannel walls[J]. Advanced Energy Materials, 2020, 10(7): doi: 10.1002/aenm.201903753. |
69 | LI Y , WANG C , WANG W , et al . Enhanced chemical immobilization and catalytic conversion of polysulfide intermediates using metallic Mo nanoclusters for high-performance Li-S batteries[J]. ACS Nano, 2020, 14(1): 1148-1157. |
70 | HOU L P , YUAN H , ZHAO C Z , et al . Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium-sulfur batteries[J]. Energy Storage Materials, 2020, 25: 436-442. |
71 | HE J , MANTHIRA M A . Long-life, high-rate lithium-sulfur cells with a carbon-free VN host as an efficient polysulfide adsorbent and lithium dendrite inhibitor[J]. Advanced Energy Materials, 2020, 10(3): doi: 10.1002/aenm.201903241. |
72 | CUI J , LI Z , LI J , et al . An atomic-confined-space separator for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2020, 8(4): 1896-1903. |
73 | XUE W , SHI Z , SUO L , et al . Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities[J]. Nature Energy, 2019, 4(5): 374-382. |
74 | YANG A , ZHOU G , KONG X , et al . Electrochemical generation of liquid and solid sulfur on two-dimensional layered materials with distinct areal capacities[J]. Nature Nanotechnology, 2020. 15(3): doi: 10.1038/s41565-019-0624-6. |
75 | HEINS T P , SCHLUETER N , ERNST S T , et al . On the interpretation of impedance spectra of large-format lithium-ion batteries and its application in aging studies[J]. Energy Technology, 2020, 8(2): doi: 10.1002/ente.201900279. |
76 |
LEE G H, WU J , KIM D , et al . Reversible anionic redox activities in conventional LiNi1/3Co1/3Mn1/3O2 cathodes[J]. Angewandte Chemie (International ed. in English), 2020, doi: 10.1002/ange.202001349 .
doi: 10.1002/ange.202001349 |
77 |
BENEDEK P , FORSLUND O K , NOCERINO E , et al . Quantifying diffusion through interfaces of lithium-ion battery active materials[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.9b21470 .
doi: 10.1021/acsami.9b21470 |
78 | OTOYAMA M , KOWADA H , SAKUDA A , et al . Operando confocal microscopy for dynamic changes of Li+ ion conduction path in graphite electrode layers of all-solid-state batteries[J]. Journal of Physical Chemistry Letters, 2020, 11(3): 900-904. |
79 | ZIESCHE R F , ARLT T , FINEGAN D P , et al . 4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique[J]. Nature Communications, 2020, 11(1): 777. |
80 | BABA T , TAKAO N , HONDA Y , et al . A spatially-resolved operando high-energy confocal X-ray diffraction method for observing non-uniform degradation phenomena in a practical cylindrical lithium-ion battery[J]. Electrochemistry, 2020, 88(2): 63-68. |
81 | FINEGAN D P , VAMVAKEROS A , TAN C , et al . Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities within lithium ion electrodes[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-14467-x. |
82 | GAUTHIER N , COURREGES C , DEMEAUX J , et al . Probing the in-depth distribution of organic/inorganic molecular species within the SEI of LTO/NMC and LTO/LMO batteries: A complementary ToF-SIMS and XPS study[J]. Applied Surface Science, 2020, 501: doi: 501.10.1016/j.apsusc.2019.144266. |
83 |
HENSCHEL J , PESCHEL C , KLEIN S , et al . Clarification of decomposition pathways in a state-of-the-art lithium ion battery electrolyte through 13 C-labeling of electrolyte components[J]. Angewandte Chemie (International ed. in English), 2020, doi: 10.1002/anie.202000727 .
doi: 10.1002/anie.202000727 |
84 | NIE Z , ONG S, HUSSEY D S , et al . Probing transport limitations in thick sintered battery electrodes with neutron imaging[J]. Molecular Systems Design & Engineering, 2020, 5(1): 245-256. |
85 | DEVAUX D , LEDUC H , DUMAZ P , et al . Effect of electrode and electrolyte thicknesses on all-solid-state battery performance analyzed with the sand equation[J]. Frontiers in Energy Research, 2020, 7: doi: 10.3389/fenrg.2019.00168. |
86 |
BIELEFELD A , WEBER D A , JANEK J . Modeling effective ionic conductivity and binder influence in composite cathodes for all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.9b22788 .
doi: 10.1021/acsami.9b22788 |
87 | HEKMATFAR M , HASA I , EGHBAL R , et al . Effect of electrolyte additives on the LiNi0.5Mn0.3Co0.2O2 surface film formation with lithium and graphite negative electrodes[J]. Advanced Materials Interfaces, 2020, 7(1): doi: 10.1002/admi.202070005. |
88 | GAO G , ZHENG F , WANG L W . Solid 3D Li-S battery design via stacking 2D conductive microporous coordination polymers and amorphous Li-S layers[J]. Chemistry of Materials, 2020, 32(5): 1974-1982. |
89 | RANDAU S , WEBER D A , KOETZ O , et al . Benchmarking the performance of all-solid-state lithium batteries[J]. Nature Energy, 2020: 259-270. |
90 | NEUMANN A , RANDAU S , BECKER-STEINBERGER K , et al . Analysis of interfacial effects in all-solid-state batteries with thiophosphate solid electrolytes[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9277-9291. |
91 | HEUBNER C , SCHNEIDER M , MICHAELIS A . Diffusion-limited C-rate: A fundamental principle quantifying the intrinsic limits of Li-ion batteries[J]. Advanced Energy Materials, 2020, 10(2): doi: 10.1002/aenm.201902523. |
92 | BEYER S , KOBSCH O , POSPIECH D , et al . Influence of surface characteristics on the penetration rate of electrolytes into model cells for lithium ion batteries[J]. Journal of Adhesion Science and Technology, 2020, 34(8): 849-866. |
93 | BAASNER A , REUTER F , SEIDEL M , et al . The role of balancing nanostructured silicon anodes and NMC cathodes in lithium-ion full-cells with high volumetric energy density[J]. Journal of the Electrochemical Society, 2020, 167(2): doi: 10.1149/1945-7111/ab68d7. |
94 | NAKAMURA H , KAWAGUCHI T , MASUYAMA T , et al . Dry coating of active material particles with sulfide solid electrolytes for an all-solid-state lithium battery[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2019.227579. |
95 | CHENG C , DRUMMOND R , DUNCAN S R , et al . Combining composition graded positive and negative electrodes for higher performance Li-ion batteries[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2019.227376. |
96 | HOUCHINS G , VISWANATHAN V . Towards ultra low cobalt cathodes: A high fidelity computational phase search of layered Li-Ni-Mn-Co oxides[J]. Journal of the Electrochemical Society, 2019, 167(7): doi: 10.1149/2.0062007JES. |
97 |
CHEN J , LUO B , CHEN Q , et al . Localized electrons enhanced ion transport for ultrafast electrochemical energy storage[J]. Advanced Materials, 2020, doi: 10.1002/adma.201905578 .
doi: 10.1002/adma.201905578 |
98 | ZHANG J , ZHENG C , LI L , et al . Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries[J]. Advanced Energy Materials, 2020, 10(4): doi: 10.1002/aenm.201903311. |
99 |
GONZALEZ M S , YAN Q , HOLOUBEK J , et al . Draining over blocking: Nano-composite janus separators for mitigating internal shorting of lithium batteries[J]. Advanced Materials, 2020, doi: 10.1002/adma.201906836 .
doi: 10.1002/adma.201906836 |
100 | BILLOT N , GUENTHER T , SCHREINER D , et al . Investigation of the adhesion strength along the electrode manufacturing process for improved lithium-ion anodes[J]. Energy Technology, 2020, 8(2): doi: 10.1002/ente.201801136. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[7] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[8] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[9] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[12] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[13] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[14] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[15] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||