Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (3): 821-835.doi: 10.19799/j.cnki.2095-4239.2021.0057
Previous Articles Next Articles
Wenlin YAN1,2,3,4(), Fan WU1,2,3,4(), Hong LI1,2,3,4, Liquan CHEN1,2,3,4
Received:
2021-02-07
Revised:
2021-02-22
Online:
2021-05-05
Published:
2021-04-30
Contact:
Fan WU
E-mail:1152841213@qq.com;fwu@iphy.ac.cn
CLC Number:
Wenlin YAN, Fan WU, Hong LI, Liquan CHEN. Application of Si-based anodes in sulfide solid-state batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 821-835.
1 | LAU J, DEBLOCK R H, BUTTS D M, et al. Sulfide solid electrolytes for lithium battery applications[J]. Advanced Energy Materials, 2018, 8(27): doi: 10.1002/aenm.201800933. |
2 | KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4): doi: 10.1038/nenergy.2016.30. |
3 | WU F, FITZHUGH W, YE L H, et al. Advanced sulfide solid electrolyte by core-shell structural design[J]. Nature Communications, 2018, 9(1): doi: 10.1038/s41467-018-06123-2. |
4 | SHARMA R A, SEEFURTH R N. Thermodynamic properties of the lithium-silicon system[J]. Journal of the Electrochemical Society, 1976, 123(12): 1763-1768. |
5 | OBROVAC M N, KRAUSE L J. Reversible cycling of crystalline silicon powder[J]. Journal of the Electrochemical Society, 2007, 154(2): A103-A108. |
6 | TAO W, WANG P, YOU Y, et al. Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries[J]. Nano Research, 2019, 12(8): 1739-1749. |
7 | KO M, CHAE S, JEONG S, et al. Elastica-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries[J]. ACS Nano, 2014, 8(8): 8591-8599. |
8 | ZHANG F Z, YANG J P. Boosting initial coulombic efficiency of Si-based anodes: A review[J]. Emergent Materials, 2020, 3(3): 369-380. |
9 | 罗飞, 褚赓, 黄杰, 等. 锂离子电池基础科学问题(Ⅷ)——负极材料[J]. 储能科学与技术, 2014, 3(2): 146-163. |
LUO F, CHU G, HUANG J, et al. Fundamental scientific aspects of lithium batteries (Ⅷ)—Anode electrode materials[J]. Energy Storage Science and Technology, 2014, 3(2): 146-163. | |
10 | BOUKAMP B A, LESH G C, HUGGINS R A. All-solid lithium electrodes with mixed-conductor matrix[J]. Journal of Electrochemical Society, 1981, 128(4): 725-729. |
11 | ZHU B, WANG X Y, YAO P C, et al. Towards high energy density lithium battery anodes: Silicon and lithium[J]. Chemical Science, 2019, 10(30): 7132-7148. |
12 | LIU L L, XU J R, WANG S, et al. Practical evaluation of energy densities for sulfide solid-state batteries[J]. eTransportation, 2019, 1: doi: 10.1016/j.etran.2019.100010. |
13 | TREVEY J E, JANG J S, JUNG Y S, et al. Glass-ceramic Li2S-P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium-ion batteries[J]. Electrochemistry Communications, 2009, 11(9): 1830-1833. |
14 | TREVEY J E, RASON K W, STOLDT C R, et al. Improved performance of all-solid-state lithium-ion batteries using nanosilicon active material with multiwalled-carbon-nanotubes as a conductive additive[J]. Electrochemical and Solid-State Letters, 2010, 13(11): doi: 10.1149/1.3479551. |
15 | WANG J, TREVEY J E, LEE S H. All-solid-state 3-D rechargeable lithium batteries with silicon rod structured electrode[J]. 2010, https://www.researchgate.net/publication/229004564_All-solid-state_3-D _rechargeable_lithium_batteries_with_silicon_rod_structured_electrode. |
16 | SON S B, TREVEY J E, ROH H et al. Microstructure study of electrochemically driven LixSi[J]. Advanced Energy Materials, 2011, 1(6): 1199-1204. |
17 | TREVEY J E, WANG J, DELUCA C M, et al. Nanostructured silicon electrodes for solid-state 3-d rechargeable lithium batteries[J]. Sensors and Actuators A: Physical, 2011, 167(2): 139-145. |
18 | PIPER D M, YERSAK T A, LEE S H. Effect of compressive stress on electrochemical performance of silicon anodes[J]. Journal of the Electrochemical Society, 2012, 160(1): A77-A81. |
19 | YERSAK T A, SON S B, CHO J S, et al. An all-solid-state Li-ion battery with a pre-lithiated Si-Ti-Ni alloy anode[J]. Journal of the Electrochemical Society, 2013, 160(9): A1497-A1501. |
20 | WHITELEY J M, KIM J W, PIPER D M, et al. High-capacity and highly reversible silicon-tin hybrid anode for solid-state lithium-ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(2): A251-A254. |
21 | YERSAK T A, SHIN J W, WANG Z Y, et al. Preparation of mesoporous Si@PAN electrodes for Li-ion batteries via the in-situ polymerization of PAN[J]. ECS Electrochemistry Letters, 2015, 4(3): A33-A36. |
22 | DUNLAP N A, KIM S, JEONG J J, et al. Simple and inexpensive coal-tar-pitch derived Si-C anode composite for all-solid-state Li-ion batteries[J]. Solid State Ionics, 2018, 324: 207-217. |
23 | KIM K B, DUNLAP N A, HAN S S, et al. Nanostructured Si/C fibers as a highly reversible anode material for all-solid-state lithium-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(9): A1903-A1908. |
24 | DUNLAP N A, KIM J, GUTHERY H, et al. Towards the commercialization of the all-solid-state Li-ion battery: Local bonding structure and the reversibility of sheet-style Si-PAN anodes[J]. Journal of the Electrochemical Society, 2020, 167(6): doi: 10.1149/1945-7111/ab84fc. |
25 | CERVERA R B, SUZUKI N, OHNISHI T, et al. High performance silicon-based anodes in solid-state lithium batteries[J]. Energy & Environmental Science, 2014, 7(2): 662-666. |
26 | MIYAZAKI R, OHTA N, OHNISHI T, et al. An amorphous Si film anode for all-solid-state lithium batteries[J]. Journal of Power Sources, 2014, 272: 541-545. |
27 | MIYAZAKI R, OHTA N, OHNISHI T, et al. Anode properties of silicon-rich amorphous silicon suboxide films in all-solid-state lithium batteries[J]. Journal of Power Sources, 2016, 329: 41-49. |
28 | SAKABE J, OHTA N, OHNISHI T, et al. Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries[J]. Communications Chemistry, 2018, 1(1): 1-9. |
29 | OHTA N, KIMURA S, SAKABE J, et al. Anode properties of Si nanoparticles in all-solid-state Li batteries[J]. ACS Applied Energy Materials, 2019, 2(10): 7005-7008. |
30 | OKUNO R, YAMAMOTO M, TERAUCHI Y, et al. Stable cyclability of porous Si anode applied for sulfide-based allsolid-state batteries[J]. Energy Procedia, 2019, 156: 183-186. |
31 | YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Slurry mixing for fabricating silicon-composite electrodes in all-solid-state batteries with high areal capacity and cycling stability[J]. Journal of Power Sources, 2018, 402: 506-512. |
32 | OKUNO R, YAMAMOTO M, KATO A, et al. Microstructures of nanoporous-Si composite anodes in sulfide-based all-solid-state lithium-ion batteries[J]. IOP Conference Series: Materials Science and Engineering, 2019, 625(1): doi: 10.1088/1757-899X/625/1/012012. |
33 | YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Effects of volume variations under different compressive pressures on the performance and microstructure of all-solid-state batteries[J]. Journal of Power Sources, 2020, 473: doi: 10.1016/j.jpowsour.2020.228595. |
34 | NAM Y J, PARK K H, OH D Y, et al. Diagnosis of failure modes for all-solid-state Li-ion batteries enabled by three-electrode cells[J]. Journal of Materials Chemistry A, 2018, 6(30): 14867-14875. |
35 | KIM D H, LEE H A, SONG Y B, et al. Sheet-type Li6PS5Cl-infiltrated Si anodes fabricated by solution process for all-solid-state lithium-ion batteries[J]. Journal of Power Sources, 2019, 426: 143-150. |
36 | XU X Y, CHENG J, LI Y Y, et al. Li metal-free rechargeable all-solid-state Li2S/Si battery based on Li7P3S11 electrolyte[J]. Journal of Solid State Electrochemistry, 2019, 23(11): 3145-3151. |
37 | KATO A, YAMAMOTO M, SAKUDA A, et al. Mechanical properties of Li2S-P2S5 glasses with lithium halides and application in all-solid-state batteries[J]. ACS Applied Energy Materials, 2018, 1(3): 1002-1007. |
38 | LEE K S, LEE Y N, YOON Y S. Effect of carbon content on nanocomposite Si(1-x)Cx thin film anode for all-solid-state battery[J]. Electrochimica Acta, 2014, 147: 232-240. |
39 | PARK A R, KIM J S, KIM K S, et al. Si-Mn/reduced graphene oxide nanocomposite anodes with enhanced capacity and stability for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 1702-1708. |
40 | BUCCI G, SWAMY T, BISHOP S, et al. The effect of stress on battery-electrode capacity[J]. Journal of the Electrochemical Society, 2017, 164(4): A645-A654. |
41 | CANGAZ S, HIPPAUF F, REUTER F S, et al. Enabling high-energy solid-state batteries with stable anode interphase by the use of columnar silicon anodes[J]. Advanced Energy Materials, 2020, 10(34): doi: 10.1002/aenm.202001320. |
42 | PARK K H, BAI Q, KIM D H, et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries[J]. Advanced Energy Materials, 2018, 8(18): doi: 10.1002/aenm.201800035. |
43 | YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities[J]. Scientific Reports, 2018, 8(1): doi: 10.1038/s41598-018-19398-8. |
44 | FITZHUGH W, WU F, YE L H, et al. Strain-stabilized ceramic-sulfide electrolytes[J]. Small, 2019: doi: 10.1002/smll.201901470. |
45 | WHITELEY J M, KIM J W, KANG C S, et al. Tin networked electrode providing enhanced volumetric capacity and pressureless operation for all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(4): A711-A715. |
46 | SAKUDA A, HAYASHI A, TATSUMISAGO M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery[J]. Scientific Reports, 2013, 3: 1-5. |
47 | XU J R, LIU L L, YAO N, et al. Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes and all-solid-state batteries[J]. Materials Today Nano, 2019, 8: doi: 10.1016/j.mtnano.2019.100048. |
48 | XU X Y, CHENG J, LI Y Y, et al. Li metal-free rechargeable all-solid-state Li2S/Si battery based on Li7P3S11 electrolyte[J]. Journal of Solid State Electrochemistry, 2019, 23(11): 3145-3151. |
49 | ZHU Y Z, HE X F, MO Y F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations[J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23685-23693. |
50 | RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chemistry of Materials, 2016, 28(1): 266-273. |
51 | ZHU B, LIU G, LV G, et al. Minimized lithium trapping by isovalent isomorphism for high initial Coulombic efficiency of silicon anodes[J]. Science Advances, 2019, 5(11): doi: 10.1126/sciadv.aax0651. |
52 | WETJEN M, SOLCHENBACH S, PRITZL D, et al. Morphological changes of silicon nanoparticles and the influence of cutoff potentials in silicon-graphite electrodes[J]. Journal of the Electrochemical Society, 2018, 165(7): A1503-A1514. |
53 | CHAE S, KO M, KIM K, et al. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries[J]. Joule, 2017, 1(1): 47-60. |
54 | CHO J. Porous Si anode materials for lithium rechargeable batteries[J]. Journal of Materials Chemistry, 2010, 20(20): 4009-4014. |
55 | 周军华, 罗飞, 褚赓, 等. 锂离子电池纳米硅碳负极材料研究进展[J]. 储能科学与技术, 2020, 9(2): 569-582. |
ZHOU J H, LUO F, CHU G, et al. Research progress on nano silicon-carbon anode materials for lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(2): 569-582. | |
56 | SUN Y M, LIU N, CUI Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1(7): 1-12. |
57 | ZUO X X, ZHU J, MÜLLER-BUSCHBAUM P, et al. Silicon based lithium-ion battery anodes: A chronicle perspective review[J]. Nano Energy, 2017, 31: 113-143. |
58 | DENG S X, SUN Y P, LI X, et al. Eliminating the detrimental effects of conductive agents in sulfide-based solid-state batteries[J]. ACS Energy Letters, 2020, 5(4): 1243-1251. |
59 | FITZHUGH W, WU F, YE L H, et al. A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors[J]. Advanced Energy Materials, 2019, 9(21): doi: 10.1002/aenm.201900807. |
60 | CHAE S, CHOI S H, KIM N, et al. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries[J]. Angewandte Chemie, 2020, 59(1): 110-135. |
61 | LOPEZ J, MACKANIC D G, CUI Y, et al. Designing polymers for advanced battery chemistries[J]. Nature Reviews Materials, 2019, 4(5): 312-330. |
62 | CHEN H, LING M, HENCZ L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices[J]. Chemical Reviews, 2018, 118(18): 8936-8982. |
63 | 王晓钰, 张渝, 马磊, 等. 锂离子电池硅基负极粘结剂发展现状[J]. 化学学报, 2019, 77(1): 24-40. |
WANG X Y ZHANG Y, MA L, et al. Recent development on binders for silicon-based anodes in lithium-ion batteries[J]. Acta Chimica Sinica, 2019, 77(1): 24-40. | |
64 | LEE K, KIM S, PARK J, et al. Selection of binder and solvent for solution-processed all-solid-state battery[J]. Journal of the Electrochemical Society, 2017, 164(9): A2075-A2081. |
65 | SAKUDA A, KURATANI K, YAMAMOTO M, et al. All-solid-state battery electrode sheets prepared by a slurry coating process[J]. Journal of the Electrochemical Society, 2017, 164(12): A2474-A2478. |
66 | RIPHAUS N, STROBL P, STIASZNY B, et al. Slurry-based processing of solid electrolytes: A comparative binder study[J]. Journal of the Electrochemical Society, 2018, 165(16): A3993-A3999. |
67 | TAN D, BANERJEE A, DENG Z, et al. Enabling thin and flexible solid-state composite electrolytes by the scalable solution process[J]. ACS Applied Energy Materials, 2019, 2(9): 6542-6550. |
[1] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[2] | Shangsen CHI, Yidong JIANG, Qingrong WANG, Ziwei YE, Kai YU, Jun MA, Jun JIN, Jun WANG, Chaoyang WANG, Zhaoyin WEN, Yonghong DENG. The liquid electrolyte modified interface between garnet-type solid-state electrolyte and lithium anode [J]. Energy Storage Science and Technology, 2021, 10(3): 914-924. |
[3] | Xinxin ZHU, Wei JIANG, Zhengwei WAN, Shu ZHAO, Zeheng LI, Liguang WANG, Wenbin NI, Min LING, Chengdu LIANG. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 848-862. |
[4] | Peng ZHANG, Xingqiang LAI, Junrong SHEN, Donghai ZHANG, Yongheng YAN, Rui ZHANG, Jun SHENG, Kangwei DAI. Research and industrialization progress of solid-state lithium battery [J]. Energy Storage Science and Technology, 2021, 10(3): 896-904. |
[5] | Guangling WEI, Ying JIANG, Jiahui ZHOU, Ziheng WANG, Yongxin HUANG, Man XIE, Feng WU. Research progress on metal oxides/sulfides/selenides anode materials of sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1318-1326. |
[6] | Yongsheng GAO, Guanghai CHEN, Xinran WANG, Ying BAI, Chuan WU. Safety of electrolytes for sodium-ion batteries: Strategies and progress [J]. Energy Storage Science and Technology, 2020, 9(5): 1309-1317. |
[7] | Manman JIA, Long ZHANG. Recent development on sulfide solid electrolytes for solid-state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1266-1283. |
[8] | ZHOU Hong, WEI Feng, WU Yongqing. Research on the development of inorganic solid-state electrolyte for lithium battery based on patent analysis [J]. Energy Storage Science and Technology, 2020, 9(3): 1001-1007. |
[9] | YE Ge, YUAN Hong, ZHAO Chenzi, ZHU Gaolong, XU Lei, HOU Lipeng, CHENG Xinbing, HE Chuanxin, NAN Haoxiong, LIU Quanbin, HUANG Jiaqi, ZHANG Qiang. Balance between ion migration and electron transport in composite cathodes for all-solid-state lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 339-345. |
[10] | WU Jinghua, YAO Xiayin. Recent progress in interfaces of all-solid-state lithium batteries based on sulfide electrolytes [J]. Energy Storage Science and Technology, 2020, 9(2): 501-514. |
[11] | YANG Jianfeng, LI Linyan, WU Zhenyue, WANG Kaixue. Progress of inorganic solid electrolyte for lithium ion batteries [J]. Energy Storage Science and Technology, 2019, 8(5): 829-837. |
[12] | MA Yanmei. Recent research progress of metal sulfides as anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2019, 8(3): 488-494. |
[13] | YANG Kaihua, LIAO Zhu, LI Xuesong, ZHANG Zhengxi, YANG Li. Novel ionic plastic crystal-polymeric ionic liquid all-solid-state electrolytes for lithium ion batteries [J]. Energy Storage Science and Technology, 2018, 7(6): 1113-1119. |
[14] | TIAN Liyuan, JU Xiaoxia, XIANG Feng, ZHOU Ming. Recent research progress of metal compounds as anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2018, 7(6): 1211-1216. |
[15] | YUAN Yan, ZHENG Dongdong, FANG Zhao, LIU Manbo, LI Tao. Research progress on sulfur cathode of lithium sulfur battery [J]. Energy Storage Science and Technology, 2018, 7(4): 618-630. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||