Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (11): 3556-3571.doi: 10.19799/j.cnki.2095-4239.2023.0732
Previous Articles Next Articles
Junfeng HAO(), Jing ZHU, Xinxin ZHANG, Qiangfu SUN, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2023-10-17
Online:
2023-11-05
Published:
2023-11-16
Contact:
Xuejie HUANG
E-mail:haojunfeng21@mails.ucas.ac.cn;xjhuang@iphy. ac.cn
CLC Number:
Junfeng HAO, Jing ZHU, Xinxin ZHANG, Qiangfu SUN, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2023 to Sep. 30, 2023)[J]. Energy Storage Science and Technology, 2023, 12(11): 3556-3571.
1 | CHANG M, CHENG F Y, ZHANG W, et al. Antioxidant layer enables chemically stable cathode-electrolyte interface towards durable and safe Li-ion batteries[J]. Energy Storage Materials, 2023, 61: 102872. |
2 | YE Q, LI X H, ZHANG W K, et al. Slurry-coated LiNi0.8Co0.1Mn0.1O2-Li3InCl6 composite cathode with enhanced interfacial stability for sulfide-based all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(15): 18878-18888. |
3 | MORINO Y, SHIOTA A, KANADA S, et al. Design of cathode coating using niobate and phosphate hybrid material for sulfide-based solid-state battery[J]. ACS Applied Materials & Interfaces, 2023, 15(30): 36086-36095. |
4 | RAHMAN M M, XIA K X, YANG X Q, et al. Asymmetric lithium extraction and insertion in high voltage spinel at fast rate[J]. Nano Letters, 2023, 23(15): 7135-7142. |
5 | NA I, KIM H, KUNZE S, et al. Monolithic 100% silicon wafer anode for all-solid-state batteries achieving high areal capacity at room temperature[J]. ACS Energy Letters, 2023, 8(4): 1936-1943. |
6 | CHEN C, ZHANG J M, HU B R, et al. Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode[J]. Nature Communications, 2023, 14: 4018. |
7 | SUN Z H, WANG Y K, SHEN S Y, et al. Directing (110) oriented lithium deposition through high-flux solid electrolyte interphase for dendrite-free lithium metal batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(41): e202309622. |
8 | SHEN H L, CAI Y L, MA Z T, et al. Layered manganese phosphorus trisulfides for high-performance lithium-ion batteries and the storage mechanism[J]. Carbon Energy, 2023, 5(3): doi: 10.1002/cey2.290. |
9 | SONG C Y, ZHAO J T, MA S B, et al. Ordered lithium-ion conductive interphase with gradient desolvation effects for fast-charging lithium metal batteries[J]. ACS Energy Letters, 2023, 8(8): 3404-3411. |
10 | LI Y X, SONG S B, KIM H, et al. A lithium superionic conductor for millimeter-thick battery electrode[J]. Science, 2023, 381: 50-53. |
11 | JIN Y M, HE Q S, LIU G Z, et al. Fluorinated Li10GeP2S12 enables stable all-solid-state lithium batteries[J]. Advanced Materials, 2023, 35(19): doi: 10.1002/adma.202211047. |
12 | CHOI I H, KIM E, JO Y S, et al. Solvent-engineered synthesis of sulfide solid electrolytes for high performance all-solid-state batteries[J]. Journal of Industrial and Engineering Chemistry, 2023, 121: 107-113. |
13 | INDRAWAN R F, GAMO H, NAGAI A, et al. Chemically understanding the liquid-phase synthesis of argyrodite solid electrolyte Li6PS5Cl with the highest ionic conductivity for all-solid-state batteries[J]. Chemistry of Materials, 2023, 35(6): 2549-2558. |
14 | LEE H, KIM G, SONG Y, et al. Hybrid liquid-solid composite electrolytes for sulfide-based solid-state batteries: Advantages and limitation[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202305373. |
15 | GANESAN P, SOANS M, ALI CAMBAZ M, et al. Fluorine-substituted halide solid electrolytes with enhanced stability toward the lithium metal[J]. ACS Applied Materials & Interfaces, 2023, 15(32): 38391-38402. |
16 | ZHANG H C, YU Z Z, CHEN H N, et al. Li-richening strategy in Li2ZrCl6 lattice towards enhanced ionic conductivity[J]. Journal of Energy Chemistry, 2023, 79: 348-356. |
17 | KWAK H, KIM J S, HAN D, et al. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries[J]. Nature Communications, 2023, 14: 2459. |
18 | ZHANG S M, ZHAO F P, CHEN J T, et al. A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries[J]. Nature Communications, 2023, 14: 3780. |
19 | LU G J, LIU W, YANG Z G, et al. Superlithiophilic, ultrastable, and ionic-conductive interface enabled long lifespan all-solid-state lithium-metal batteries under high mass loading[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202304407. |
20 | FU Y D, YANG K, XUE S D, et al. Surface defects reinforced polymer-ceramic interfacial anchoring for high-rate flexible solid-state batteries[J]. Advanced Functional Materials, 2023, 33(10): doi: 10.1002/adfm.202210845. |
21 | SAHAL M, MOLLOY J, NARAYANAN V R, et al. Robust and manufacturable lithium lanthanum titanate-based solid-state electrolyte thin films deposited in open air[J]. ACS Omega, 2023, 8(31): 28651-28662. |
22 | HU L, WANG J Z, WANG K, et al. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries[J]. Nature Communications, 2023, 14: 3807. |
23 | HAN Z S, ZHANG R H, JIANG J L, et al. High-efficiency lithium-ion transport in a porous coordination chain-based hydrogen-bonded framework[J]. Journal of the American Chemical Society, 2023, 145(18): 10149-10158. |
24 | LU D, ZHANG S H, LI J D, et al. Transformed solvation structure of noncoordinating flame-retardant assisted propylene carbonate enabling high voltage Li-ion batteries with high safety and long cyclability[J]. Advanced Energy Materials, 2023, 13(28): doi: 10.1002/aenm.202300684. . |
25 | CAI Q Q, JIA H, LI G J, et al. Outstanding performances of graphite||NMC622 pouch cells enabled by a non-inert diluent[J]. Journal of Energy Chemistry, 2023, 81: 593-602. |
26 | WANG Z C, HAN R, HUANG D, et al. Co-intercalation-free ether-based weakly solvating electrolytes enable fast-charging and wide-temperature lithium-ion batteries[J]. ACS Nano, 2023, 17(18): 18103-18113. |
27 | MA T, NI Y X, LI D T, et al. Reversible solid-solid conversion of sulfurized polyacrylonitrile cathodes in lithium-sulfur batteries by weakly solvating ether electrolytes[J]. Angewandte Chemie International Edition, 2023, 62(43): doi: 10.1002/anie.202310761: e202310761-e202310761. |
28 | WANG A X, SONG Y N, ZHAO Z F, et al. Solvation engineering enables high-voltage lithium ion and metal batteries operating under -50 and 80 ℃[J]. Advanced Functional Materials, 2023, 33(35): doi: 10.1002/adfm.202302503. |
29 | CHENG F Y, XU J A, WEI P, et al. Interface engineering via regulating electrolyte for high-voltage layered oxide cathodes-based Li-ion batteries[J]. Advanced Science, 2023, 10(12): doi: 10.1002/advs.202206714. |
30 | PHAN A L, JAYAWARDANA C, LE P M, et al. Solvent-free electrolyte for high-temperature rechargeable lithium metal batteries[J]. Advanced Functional Materials, 2023, 33(34): doi: 10.1002/adfm.202301177. |
31 | QIN M S, ZENG Z Q, WU Q, et al. 1, 3, 5-Trifluorobenzene endorsed EC-free electrolyte for high-voltage and wide-temperature lithium-ion batteries[J]. Journal of Energy Chemistry, 2023, 85: 49-57. |
32 | MAO S L, MAO J L, SHEN Z Y, et al. Specific adsorption-oxidation strategy in cathode inner Helmholtz plane enabling 4.6 V practical lithium-ion full cells[J]. Nano Letters, 2023, 23(15): 7014-7022. |
33 | FAN Z Q, ZHOU X Z, QIU J W, et al. Sulfur-rich additive-induced interphases enable highly stable 4.6 V LiNi0.5Co0.2Mn0.3O2||graphite pouch cells[J]. Angewandte Chemie International Edition, 2023, 62(39): doi: 10.1002/anie.202308888: e202308888-e202308888. |
34 | KIM W, KIM T H, YU J S, et al. Interface-targeting individually functionalized ionic additive to construct stable interphase on selective electrode surface for practical lithium-ion pouch cells[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202306068. |
35 | LAN X W, YANG S S, MENG T, et al. A multifunctional electrolyte additive with solvation structure regulation and electrode/electrolyte interface manipulation enabling high-performance Li-ion batteries in wide temperature range[J]. Advanced Energy Materials, 2023, 13(16): doi: 10.1002/aenm.202203449. |
36 | ZHANG J B, ZHANG H K, WENG S T, et al. Multifunctional solvent molecule design enables high-voltage Li-ion batteries[J]. Nature Communications, 2023, 14: 2211. |
37 | HAO Z D, WANG C J, WU Y E, et al. Electronegative nanochannels accelerating lithium-ion transport for enabling highly stable and high-rate lithium metal anodes[J]. Advanced Energy Materials, 2023, 13(28): doi: 10.1002/aenm.202204007. . |
38 | LEE J, PARK H, HWANG J, et al. Delocalized lithium ion flux by solid-state electrolyte composites coupled with 3D porous nanostructures for highly stable lithium metal batteries[J]. ACS Nano, 2023, 17(16): 16020-16035. |
39 | KAUTZ D J, CAO X A, GAO P Y, et al. Designing electrolytes with controlled solvation structure for fast-charging lithium-ion batteries[J]. Advanced Energy Materials, 2023, 13(35): doi: 10.1002/aenm. 202301199. |
40 | WENG S T, ZHANG X A, YANG G J, et al. Temperature-dependent interphase formation and Li+ transport in lithium metal batteries[J]. Nature Communications, 2023, 14: 4474. |
41 | PRAKASH P, FALL B, AGUIRRE J, et al. A soft co-crystalline solid electrolyte for lithium-ion batteries[J]. Nature Materials, 2023, 22(5): 627-635. |
42 | CHEN Y W, LI M H, LIU Y E, et al. Origin of dendrite-free lithium deposition in concentrated electrolytes[J]. Nature Communications, 2023, 14: 2655. |
43 | HUANG J Y, CHENG C Y, LAI Y M, et al. Engineering cathode-electrolyte interface of high-voltage spinel LiNi0.5Mn1.5O4 via halide solid-state electrolyte coating[J]. ACS Applied Materials & Interfaces, 2023, 15(34): 40648-40655. |
44 | LEE D, CUI Z H, GOODENOUGH J B, et al. Interphase stabilization of LiNi0.5Mn1.5O4 cathode for 5 V-class all-solid-state batteries[J]. Small, 2023: doi: 10.1002/smll.202306053: e2306053-e2306053. |
45 | WANG K J, LIANG Z T, WENG S T, et al. Surface engineering strategy enables 4.5 V sulfide-based all-solid-state batteries with high cathode loading and long cycle life[J]. ACS Energy Letters, 2023, 8(8): 3450-3459. |
46 | WANG K, GU Z Q, XI Z W, et al. Li3TiCl6 as ionic conductive and compressible positive electrode active material for all-solid-state lithium-based batteries[J]. Nature Communications, 2023, 14: 1396. |
47 | LUO J, SUN Q A, LIANG J W, et al. Rapidly in situ cross-linked poly(butylene oxide) electrolyte interface enabling halide-based all-solid-state lithium metal batteries[J]. ACS Energy Letters, 2023, 8(9): 3676-3684. |
48 | JANGID M K, DAVIS A L, LIAO D W, et al. Improved rate capability in composite solid-state battery electrodes using 3-D architectures[J]. ACS Energy Letters, 2023, 8(6): 2522-2531. |
49 | XU H F, ZHU Q, ZHAO Y, et al. Phase-changeable dynamic conformal electrode/electrolyte interlayer enabling pressure-independent solid-state lithium metal batteries[J]. Advanced Materials, 2023, 35(18): doi: 10.1002/adma.202212111. |
50 | PARK R J Y, FINCHER C D, BADEL A F, et al. Ultrahigh areal capacity Li electrodeposition at metal-solid electrolyte interfaces under minimal stack pressures enabled by interfacial Na-K liquids[J]. ACS Applied Materials & Interfaces, 2023, 15(30): 36117-36123. |
51 | LIU T, ZHANG L, LI J W, et al. In situ formed interfacial layer for all-solid-state lithium batteries with sulfide electrolyte films[J]. Journal of Power Sources, 2023, 580: 233290. |
52 | LIU Y, WANG C C, YOON S G, et al. Aluminum foil negative electrodes with multiphase microstructure for all-solid-state Li-ion batteries[J]. Nature Communications, 2023, 14: 3975. |
53 | JIN B Y, LAI T X, MANTHIRAM A. High-mass-loading anode-free lithium-sulfur batteries enabled by a binary binder with fast lithium-ion transport[J]. ACS Energy Letters, 2023, 8(9): 3767-3774. |
54 | CHEN Z Z, LU M J, QIAN Y, et al. Ultra-low dosage lignin binder for practical lithium-sulfur batteries[J]. Advanced Energy Materials, 2023, 13(17): doi: 10.1002/aenm.202300092. |
55 | LUO R J, GUO Q F, TANG Z H, et al. Boosting redox kinetics of sulfur electrochemistry by manipulating interfacial charge redistribution and multiple spatial confinement in mott-schottky electrocatalysts[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202306115. |
56 | ZHANG H, CHEN J W, LI Z, et al. Operating lithium-sulfur batteries in an ultrawide temperature range from ‒50 ℃ to 70 ℃[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202304433. |
57 | LIU G D, HE Y, LIU Z X, et al. In situ visualization of the pinning effect of planar defects on Li ion insertion[J]. Nano Letters, 2023, 23(15): 6839-6844. |
58 | KIM B, PARK M J. All-solid-state lithium-sulfur batteries enabled by single-ion conducting binary nanoparticle electrolytes[J]. Materials Horizons, 2023, 10(10): 4139-4147. |
59 | HUANG J H, SHAO Y F, LIU Z H, et al. Nano sulfurized polyacrylonitrile cathode for high performance solid-state lithium-sulfur batteries[J]. Journal of Power Sources, 2023, 570: 233045. |
60 | CAO D X, SUN X A, LI F, et al. Understanding electrochemical reaction mechanisms of sulfur in all-solid-state batteries through operando and theoretical studies[J]. Angewandte Chemie International Edition, 2023, 62(20): doi: 10.1002/anie.202302363. |
61 | FAN B, GUAN Z B, WU L L, et al. Particle size control of cathode components for high-performance all-solid-state lithium-sulfur batteries[J]. Journal of the American Ceramic Society, 2023, 106(10): 5781-5794. |
62 | WANG D W, JHANG L J, KOU R, et al. Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte[J]. Nature Communications, 2023, 14: 1895. |
63 | FIEDLER M, CANGAZ S, HIPPAUF F, et al. Mechanistic insights into the cycling behavior of sulfur dry-film cathodes[J]. Advanced Sustainable Systems, 2023, 7(4): doi: 10.1002/adsu.202200439. |
64 | LIU Y T, GONG X T, PODDER C, et al. Roll-to-roll solvent-free manufactured electrodes for fast-charging batteries[J]. Joule, 2023, 7(5): 952-970. |
65 | KOMODA Y, ISHIBASHI K, KURATANI K, et al. Effects of drying rate and slurry microstructure on the formation process of LiB cathode and electrochemical properties[J]. Journal of Power Sources, 2023, 568: 232983. |
66 | JU Z Y, ZHENG T R, CALDERON J, et al. Scalable fast-charging aligned battery electrodes enabled by bidirectional freeze-casting[J]. Nano Letters, 2023, 23(18): 8787-8793. |
67 | HIKIMA K, SATO Y, YOKOI A, et al. Fabrication and electrochemical properties of electrode composites for oxide-type all-solid-state batteries through electrostatic integrated assembly[J]. Heliyon, 2023, 9(7): e17889. |
68 | PINILLA S, RYAN S, MCKEON L, et al. Additive manufacturing of Li-ion batteries: A comparative study between electrode fabrication processes[J]. Advanced Energy Materials, 2023, 13(15): doi: 10.1002/aenm.202203747. |
69 | ADAMSON A, TUUL K, BÖTTICHER T, et al. Improving lithium-ion cells by replacing polyethylene terephthalate jellyroll tape[J]. Nature Materials, 2023: 1-7. |
70 | TAO R M, STEINHOFF B, SAWICKI C H, et al. Unraveling the impact of the degree of dry mixing on dry-processed lithium-ion battery electrodes[J]. Journal of Power Sources, 2023, 580: 233379. |
71 | YONAGA A, KAWAUCHI S, MORI Y, et al. Effects of dry powder mixing on electrochemical performance of lithium-ion battery electrode using solvent-free dry forming process[J]. Journal of Power Sources, 2023, 581: 233466. |
72 | PARK K, RYU M, JUNG Y, et al. Mitigation of binder migration behavior during the drying process by applying an electric field for fast-charging in lithium-ion batteries[J]. Batteries & Supercaps, 2023, 6(9): doi: 10.1002/batt.202300170. |
73 | ARGYROPOULOS D- P, SELINIS P, VRITHIAS N R, et al. Poly-lactic acid/graphene anode for lithium-ion batteries manufactured with a facile hot-pressed solvent-free process[J]. Journal of the Electrochemical Society, 2023, 170(5): doi: 10.1149/1945-7111/acd0a8. |
74 | GULSOY B, VINCENT T A, BRIGGS C, et al. In-situ measurement of internal gas pressure within cylindrical lithium-ion cells[J]. Journal of Power Sources, 2023, 570: 233064. |
75 | ALSHEIMER L, HEIDRICH B, PESCHEL C, et al. Suppressing gas evolution in Li4Ti5O12-based pouch cells by high temperature formation[J]. Journal of Power Sources, 2023, 575: 233207. |
76 | MORINO Y, TSUKASAKI H, MORI S. Microscopic degradation mechanism of argyrodite-type sulfide at the solid electrolyte-cathode interface[J]. ACS Applied Materials & Interfaces, 2023, 15(19): 23051-23057. |
77 | MATSUDA R, TANAKA A, YANAGIHARA K, et al. Deterioration analysis of Si composite anodes for all-solid-state batteries during charge-discharge by auger electron spectroscopy and scanning electron microscopy with energy dispersive spectroscopy[J]. The Journal of Physical Chemistry C, 2023, 127(33): 16508-16514. |
78 | GU Z Q, MA J L, ZHU F, et al. Atomic-scale study clarifying the role of space-charge layers in a Li-ion-conducting solid electrolyte[J]. Nature Communications, 2023, 14: 1632. |
79 | CAO D X, JI T T, SINGH A, et al. Unveiling the mechanical and electrochemical evolution of nanosilicon composite anodes in sulfide-based all-solid-state batteries[J]. Advanced Energy Materials, 2023, 13(14): doi: 10.1002/aenm.202203969. |
80 | PARK Y S, KIM K, LEE J W, et al. Effect of cell pressure on the electrochemical performance of all-solid-state lithium batteries with zero-excess Li metal anode[J]. Journal of the American Ceramic Society, 2023, 106(12): 7322-7330. |
81 | LIANG Z T, XIANG Y X, WANG K J, et al. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy[J]. Nature Communications, 2023, 14: 259. |
82 | FENG G X, JIA H, SHI Y P, et al. Imaging solid-electrolyte interphase dynamics using operando reflection interference microscopy[J]. Nature Nanotechnology, 2023, 18(7): 780-789. |
83 | SHITANDA I, SUGAYA K, BABA C, et al. Rheo-impedance measurements for the dispersibility evaluation of electrode slurries[J]. ACS Applied Electronic Materials, 2023, 5(8): 4394-4400. |
84 | GÖLDNER V, QUACH L, ADHITAMA E, et al. Laser desorption/ionization-mass spectrometry for the analysis of interphases in lithium ion batteries[J]. iScience, 2023, 26(9): 107517. |
85 | WOODAHL C, JAMNUCH S, AMADO A, et al. Probing lithium mobility at a solid electrolyte surface[J]. Nature Materials, 2023, 22(7): 848-852. |
86 | GOPAL R, WU L A, LEE Y, et al. Transient polarization and dendrite initiation dynamics in ceramic electrolytes[J]. ACS Energy Letters, 2023, 8(5): 2141-2149. |
87 | LODICO J J, MECKLENBURG M, CHAN H L, et al. Operando spectral imaging of the lithium ion battery's solid-electrolyte interphase[J]. Science Advances, 2023, 9(28): doi: 10.1126/sciadv.adg5135. |
88 | ZHU H T, LI Z P, LI C L, et al. Near-in-situ electrochemical impedance spectroscopy analysis based on lithium iron phosphate electrode[J]. Electrochimica Acta, 2023, 464: 142919. |
89 | HIDALGO M F V, APACHITEI G, DOGARU D, et al. Design of experiments for optimizing the calendering process in Li-ion battery manufacturing[J]. Journal of Power Sources, 2023, 573: 233091. |
90 | CHOUDHURY S, HUANG Z J, AMANCHUKWU C V, et al. Ion conducting polymer interfaces for lithium metal anodes: Impact on the electrodeposition kinetics[J]. Advanced Energy Materials, 2023, 13(35): doi: 10.1002/aenm.202301899. |
91 | GAO Y C, YAO N, CHEN X A, et al. Data-driven insight into the reductive stability of ion-solvent complexes in lithium battery electrolytes[J]. Journal of the American Chemical Society, 2023: doi: 10.1021/jacs.3c08346. |
92 | QUIRK J A, DAWSON J A. Design principles for grain boundaries in solid-state lithium-ion conductors[J]. Advanced Energy Materials, 2023, 13(32): doi: 10.1002/aenm.202301114. |
93 | YANG M H, LIU Y S, MO Y F. Lithium crystallization at solid interfaces[J]. Nature Communications, 2023, 14: 2986. |
94 | SOHIB A, IRHAM M A, KARUNAWAN J, et al. Interface analysis of LiCl as a protective layer of Li1.3Al0.3Ti1.7(PO4)3 for electrochemically stabilized all-solid-state Li-metal batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(13): 16562-16570. |
95 | WU Y J, XU J W, LU P S, et al. Thermal stability of sulfide solid electrolyte with lithium metal[J]. Advanced Energy Materials, 2023, doi: 10.1002/aenm.202301336. |
96 | BROWNING K L, WESTOVER A S, BROWNING J F, et al. In situ measurement of buried electrolyte–electrode interfaces for solid state batteries with nanometer level precision[J]. ACS Energy Letters, 2023, 8(4): 1985-1991. |
97 | KWON H, CHOI H J, JANG J K, et al. Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries[J]. Nature Communications, 2023, 14: 4047. |
98 | FENG Y Y, LI Y, LIN J, et al. Production of high-energy 6-Ah-level Li ||LiNi0.83Co0.11Mn0.06O2 multi-layer pouch cells via negative electrode protective layer coating strategy[J]. Nature Communications, 2023, 14: 3639. |
99 | HU P, CHEN W, WANG Y, et al. Fatigue-free and skin-like supramolecular ion-conductive elastomeric interphases for stable lithium metal batteries[J]. ACS Nano, 2023, 17(16): 16239-16251. |
100 | SUN Z H, WANG Y K, QIN Y Y, et al. Ultra-thin and ultra-light self-lubricating layer with accelerated dynamics for anode-free lithium metal batteries[J]. Energy Storage Materials, 2023, 58: 110-122. |
[1] | Xiangyang ZHOU, Yingjie HU, Jiahao LIANG, Qijie ZHOU, Kang WEN, Song CHEN, Juan YANG, Jingjing TANG. Preparation and lithium storage characteristics of high-performance anode materials based on spheroidized tailings of natural flake graphite [J]. Energy Storage Science and Technology, 2023, 12(9): 2767-2777. |
[2] | Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Junfeng HAO, Qiangfu SUN, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2023 to Jul. 31, 2023) [J]. Energy Storage Science and Technology, 2023, 12(9): 3003-3018. |
[3] | Cong LI, Tao WANG, Yanjie REN, Libo ZHOU, Jian CHEN, Wei CHEN. Cathodic dissolution and protection of molten carbonate fuel cells [J]. Energy Storage Science and Technology, 2023, 12(8): 2444-2456. |
[4] | Zinan ZHANG, Jian CHEN. Preparation and property evaluation of Nb-doped Na3V2O2 (PO4 ) 2F hollow microspheres as cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2370-2381. |
[5] | Zhengguang ZHAO, Zhenying CHEN, Guangqun ZHAI, Xi ZHANG, Xiaodong ZHUANG. Preparation of Sc/O-doped sulfide electrolyte for all-solid-state batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2412-2423. |
[6] | Huan LIU, Na PENG, Qingwen GAO, Wenpeng LI, Zhirong YANG, Jingtao WANG. Crown ether-doped polymer solid electrolyte for high-performance all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2401-2411. |
[7] | Hengheng XIA, Pengcheng LIANG, Zhongxun AN. Effects of sulfur-containing electrolyte additives on the performance of lithium nickel cobalt manganese oxide//graphite Li-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2390-2400. |
[8] | Zhihao LIU, Tong DU, Ruirui LI, Tao DENG. Developments of wide temperature range, high voltage and safe EC-free electrolytes [J]. Energy Storage Science and Technology, 2023, 12(8): 2504-2525. |
[9] | Ding ZHANG, Zixian YE, Zhenming LIU, Qun YI, Lijuan SHI, Huijuan GUO, Yi HUANG, Li WANG, Xiangming HE. Research progress of black phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2482-2490. |
[10] | Chong XU, Ning XU, Zhimin JIANG, Zhongkai LI, Yang HU, Hong YAN, Guoqiang MA. Mechanisms of gas evolution and suppressing strategies based on the electrolyte in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2119-2133. |
[11] | Zenghui HAO, Xunliang LIU, Yuan MENG, Nan MENG, Zhi WEN. Effect of electrode interface microstructure on the performance of solid-state lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(7): 2095-2104. |
[12] | Jiayi ZHANG, Suting WENG, Zhaoxiang WANG, Xuefeng WANG. Solid electrolyte interphase (SEI) on graphite anode correlated with thermal runaway of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118. |
[13] | Guiping ZHANG, Xiaoyan YAN, Bing WANG, Peixin YAO, Changjie HU, Yizhe LIU, Shuli LI, Jianjun XUE. Long life lithium iron phosphate battery and its materials and process [J]. Energy Storage Science and Technology, 2023, 12(7): 2134-2140. |
[14] | Qixin GAO, Jingteng ZHAO, Guoxing LI. Research progress on fast-charging lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2166-2184. |
[15] | Ronghan QIAO, Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Junfeng HAO, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2023 to May 31, 2023) [J]. Energy Storage Science and Technology, 2023, 12(7): 2333-2348. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||