Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (1): 193-211.doi: 10.19799/j.cnki.2095-4239.2023.0821
Previous Articles Next Articles
Feng LI1(), Xiaobin CHENG2(), Jinda LUO2, Hongbin YAO1,2()
Received:
2023-11-15
Revised:
2023-11-17
Online:
2024-01-05
Published:
2024-01-22
Contact:
Hongbin YAO
E-mail:fengli96@mail.ustc.edu.cn;cxb212317@mail.ustc.edu.cn;yhb@ustc.edu.cn
CLC Number:
Feng LI, Xiaobin CHENG, Jinda LUO, Hongbin YAO. Metal chloride solid-state electrolytes and all-solid-state batteries: State-of-the-art developments and perspectives[J]. Energy Storage Science and Technology, 2024, 13(1): 193-211.
Fig. 5
(a) Formation mechanism of Li-M-Cl crystal framework and vacancy[31; (b) hexagonal and cubic close packed lattice based on the principle of the ratio of the radius of anions and ions[64]; (c) cubic close-packed monoclinic structure and spinel structure of Li-Sc-Cl[45, 50]; (d) the ideal Li2ZrCl6 layered structure[49] and (e) Li2ZrCl6 layered structure with zirconium defects obtained by atomic simulation[49]"
Table 1
High specific energy metal chlorides based solid state lithium battery design parameters[64]"
Cathode | Lithium | Halide | Energy density | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NCM811, 200 mAh/g; S8,1400 mAh/g | ||||||||||||
ASSLB | CAM/% | Loading/(mg/cm2) | Capacity/(mAh/cm2) | Thickness/μm | Tap density/(g/cm3) | Thickness/μm | Thickness/μm | Wh/L | Wh/kg | |||
Li | 85 | 27 | 4 | 80 | 3.4 | 40 | 30 | 990 | 400 | |||
Li-S | 60 | 10 | 8.4 | 70 | 1.4 | 80 | 30 | 650 | 500 |
1 | KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1: 16030. |
2 | KOOHI-FAYEGH S, ROSEN M A. A review of energy storage types, applications and recent developments[J]. Journal of Energy Storage, 2020, 27: 101047. |
3 | CHOI D, SHAMIM N, CRAWFORD A, et al. Li-ion battery technology for grid application[J]. Journal of Power Sources, 2021, 511: 230419. |
4 | JANEK J, ZEIER W G. A solid future for battery development[J]. Nature Energy, 2016, 1: 16141. |
5 | KORTHAUER R. Handbuch Lithium-Ionen-Batterien[M]. Berlin, Heidelberg: Springer Berlin Heidelberg: 2013. |
6 | ZHANG Y, ZUO T T, POPOVIC J, et al. Towards better Li metal anodes: Challenges and strategies[J]. Materials Today, 2020, 33: 56-74. |
7 | ALBRTUS P, ANANDAN V, BAN C, et al. Challenges for and pathways toward Li-metal-based all-solid-state batteries[J]. ACS Energy Lett, 2021, 6, 4: 1399-1404. |
8 | MA X T, AZHARI L, WANG Y. Li-ion battery recycling challenges[J]. Chem, 2021, 7(11): 2843-2847. |
9 | FANG C C, WANG X F, MENG Y S. Key issues hindering a practical lithium-metal anode[J]. Trends in Chemistry, 2019, 1(2): 152-158. |
10 | MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2: 16103. |
11 | HU Y S. Batteries: Getting solid[J]. Nature Energy, 2016, 1: 16042. |
12 | CHEN R S, LI Q H, YU X Q, et al. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces[J]. Chemical Reviews, 2020, 120(14): 6820-6877. |
13 | LEWIS J A, TIPPENS J, CORTES F J Q, et al. Chemo-mechanical challenges in solid-state batteries[J]. Trends in Chemistry, 2019, 1(9): 845-857. |
14 | KASEMCHAINAN J, BRUCE P G. All-solid-state batteries and their remaining challenges[J]. Johnson Matthey Technology Review, 2018, 62(2): 177-180. |
15 | KERMAN K, LUNTZ A, VISWANATHAN V, et al. Review—Practical challenges hindering the development of solid state Li ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(7): A1731-A1744. |
16 | PASTA M, ARMSTRONG D, BROWN Z, et al. 2020 roadmap on solid-state batteries[J]. J. Phys: Energy. 2020, 2(3): 032008. |
17 | FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291. |
18 | ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252. |
19 | WANG C W, FU K, KAMMAMPATA S P, et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries[J]. Chemical Reviews, 2020, 120(10): 4257-4300. |
20 | JIAN Z L, HU Y S, JI X L, et al. NASICON-structured materials for energy storage[J]. Advanced Materials, 2017, 29(20): 1601925. |
21 | ZHENG J F, PERRY B, WU Y Y. Antiperovskite superionic conductors: A critical review[J]. ACS Materials Au, 2021, 1(2): 92-106. |
22 | XIA W, ZHAO Y, ZHAO F P, et al. Antiperovskite electrolytes for solid-state batteries[J]. Chemical Reviews, 2022, 122(3): 3763-3819. |
23 | KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society, 2001, 148(7): A742. |
24 | MINAFRA N, CULVER S P, KRAUSKOPF T, et al. Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites[J]. Journal of Materials Chemistry A, 2018, 6(2): 645-651. |
25 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
26 | OHARA K, MITSUI A, MORI M, et al. Structural and electronic features of binary Li2S-P2S5 glasses[J]. Scientific Reports, 2016, 6: 21302. |
27 | WENZEL S, WEBER D A, LEICHTWEISS T, et al. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte[J]. Solid State Ionics, 2016, 286: 24-33. |
28 | WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nature Materials, 2015, 14(10): 1026-1031. |
29 | HAN X G, GONG Y H, FU K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5): 572-579. |
30 | NIKODIMOS Y, HUANG C J, TAKLU B W, et al. Chemical stability of sulfide solid-state electrolytes: Stability toward humid air and compatibility with solvents and binders[J]. Energy & Environmental Science, 2022, 15(3): 991-1033. |
31 | HE B J, ZHANG F, XIN Y, et al. Halogen chemistry of solid electrolytes in all-solid-state batteries[J]. Nature Reviews Chemistry, 2023: 1-17. |
32 | ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J]. Advanced Materials, 2018, 30(44): 1803075. |
33 | WANG S, BAI Q, NOLAN A M, et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability[J]. Angewandte Chemie (International Ed in English), 2019, 58(24): 8039-8043. |
34 | RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chemistry of Materials, 2016, 28(1): 266-273. |
35 | ZHU Y Z, HE X F, MO Y F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations[J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23685-23693. |
36 | WANG C H, LIANG J W, LUO J, et al. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries[J]. Science Advances, 2021, 7(37): eabh1896. |
37 | LI X N, LIANG J W, CHEN N, et al. Water-mediated synthesis of a superionic halide solid electrolyte[J]. Angewandte Chemie, 2019, 131(46): 16579-16584. |
38 | KANNO R, TAKEDA Y, TAKAHASHI A, et al. New double chloride in the LiCl-CoCl2 system[J]. Journal of Solid State Chemistry, 1987, 71(1): 196-204. |
39 | KANNO R, TAKEDA Y, YAMAMOTO O, et al. ChemInform abstract: Ionic conductivity and phase transition of the bromide spinels, Li2-2 xM1+ xBr4 (M: Mg, Mn)[J]. Chemischer Informationsdienst, 1986, 17(39): 1052. |
40 | KUSKE P, SCHÄFER W, LUTZ H D. Neutron diffraction studies on spinel type Li2ZnCl4[J]. Materials Research Bulletin, 1988, 23(12): 1805-1808. |
41 | LUTZ H D, SCHMIDT W, HAEUSELER H. Phase relationships of the lithium halide spinels Li2 MCl4-Li2 MBr4 with M = Mn, Fe, Cd[J]. Journal of Solid State Chemistry, 1985, 56(1): 21-25. |
42 | SCHMIDT W, LUTZ H. Fast ionic conductivity and dielectric properties of the lithium halide spinels Li2MnCl4, Li2CdCl4, Li2MnBr4, and Li2CdBr4[J]. Ber. Bunsen-Ges. Phys. Chem., 1984, 88(8): 720-723. |
43 | KANNO R, TAKEDA Y, MATSUMOTO A, et al. Synthesis, structure, ionic conductivity, and phase transformation of new double chloride spinel, Li2CrCl4[J]. Journal of Solid State Chemistry, 1988, 75(1): 41-51. |
44 | KENNEDY J H, ZHANG Z M, ECKERT H. Ionically conductive sulfide-based lithium glasses[J]. Journal of Non-Crystalline Solids, 1990, 123(1/2/3): 328-338. |
45 | LIANG J W, LI X N, WANG S, et al. Site-occupation-tuned superionic LixScCl3+ xHalide solid electrolytes for all-solid-state batteries[J]. Journal of the American Chemical Society, 2020, 142(15): 7012-7022. |
46 | SCHLEM R, MUY S, PRINZ N, et al. Mechanochemical synthesis: A tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M=Y, Er) superionic conductors[J]. Advanced Energy Materials, 2020, 10(6): 1903719. |
47 | KWAK H, HAN D, LYOO J, et al. All-solid-state batteries: New cost-effective halide solid electrolytes for all-solid-state batteries: Mechanochemically prepared Fe3+-substituted Li2ZrCl6[J]. Advanced Energy Materials, 2021, 11(12): 2003190. |
48 | WANG K, REN Q Y, GU Z Q, et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J]. Nature Communications, 2021, 12(1): 4410. |
49 | LI F, CHENG X B, LU L L, et al. Stable all-solid-state lithium metal batteries enabled by machine learning simulation designed halide electrolytes[J]. Nano Letters, 2022, 22(6): 2461-2469. |
50 | ZHOU L D, KWOK C Y, SHYAMSUNDER A, et al. A new halospinel superionic conductor for high-voltage all solid state lithium batteries[J]. Energy & Environmental Science, 2020, 13(7): 2056-2063. |
51 | ZHOU L D, ZUO T T, KWOK C Y, et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes[J]. Nature Energy, 2022, 7(1): 83-93. |
52 | FU J M, WANG S, LIANG J W, et al. Superionic conducting halide frameworks enabled by interface-bonded halides[J]. Journal of the American Chemical Society, 2023, 145(4): 2183-2194. |
53 | YIN Y C, YANG J T, LUO J D, et al. A LaCl3-based lithium superionic conductor compatible with lithium metal[J]. Nature, 2023, 616(7955): 77-83. |
54 | CHEN S, YU C, CHEN S Q, et al. Enabling ultrafast lithium-ion conductivity of Li2ZrCl6 by indium doping[J]. Chinese Chemical Letters, 2022, 33(10): 4635-4639. |
55 | FU J Z, YANG S G, HOU J H, et al. Modeling assisted synthesis of Zr-doped Li3- xIn1- xZrxCl6 with ultrahigh ionic conductivity for lithium-ion batteries[J]. Journal of Power Sources, 2023, 556: 232465. |
56 | JUNG S K, GWON H, YOON G, et al. Pliable lithium superionic conductor for all-solid-state batteries[J]. ACS Energy Letters, 2021, 6(5): 2006-2015. |
57 | XU R N, YAO J M, ZHANG Z Q, et al. Room temperature halide-eutectic solid electrolytes with viscous feature and ultrahigh ionic conductivity[J]. Advanced Science, 2022, 9(35): 2204633. |
58 | TANAKA Y, UENO K, MIZUNO K, et al. New oxyhalide solid electrolytes with high lithium ionic conductivity >10 mS/cm for all-solid-state batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(13): e202217581. |
59 | BURMEISTER C F, KWADE A. Process engineering with planetary ball Mills[J]. Chemical Society Reviews, 2013, 42(18): 7660-7667. |
60 | LI X N, LIANG J W, LUO J, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J]. Energy & Environmental Science, 2019, 12(9): 2665-2671. |
61 | KIM S Y, KAUP K, PARK K H, et al. Lithium ytterbium-based halide solid electrolytes for high voltage all-solid-state batteries[J]. ACS Materials Letters, 2021, 3(7): 930-938. |
62 | PAULING L. The principles determining the structure of complex ionic crystals[J]. Journal of the American Chemical Society, 1929, 51(4): 1010-1026. |
63 | SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767. |
64 | WANG C H, LIANG J W, KIM J T, et al. Prospects of halide-based all-solid-state batteries: From material design to practical application[J]. Science Advances, 2022, 8(36): eadc9516. |
65 | LISSNER F, KRÄMER K, SCHLEID T, et al. Die chloride Na3 xM2- xCl6 (M=La, Sm) und NaM2Cl6 (M=Nd, Sm): Derivate des UCl3-typs. synthese, kristallstruktur und röntgenabsorptionsspektroskopie (XANES)[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 1994, 620(3): 444-450. |
66 | PARK K H, KAUP K, ASSOUD A, et al. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries[J]. ACS Energy Letters, 2020, 5(2): 533-539. |
67 | LIU Z T, MA S A, LIU J E, et al. High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary[J]. ACS Energy Letters, 2021, 6(1): 298-304. |
68 | KWAK H, WANG S, PARK J, et al. Emerging halide superionic conductors for all-solid-state batteries: Design, synthesis, and practical applications[J]. ACS Energy Letters, 2022, 7(5): 1776-1805. |
69 | KWAK H, KIM J S, HAN D, et al. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries[J]. Nature Communications, 2023, 14: 2459. |
70 | LI X N, XU Y, ZHAO C T, et al. The universal super cation-conductivity in multiple-cation mixed chloride solid-state electrolytes[J]. Angewandte Chemie International Edition, 2023, 62(48): e202306433. |
71 | ZHANG S, ZHAO F, CHEN J, et al. A family of oxychloride amorphous solid electrolytes for long-cycling all-solid state lithium batteries[J]. Nat. Commun, 2023, 14(1): 3780. |
72 | BANERJEE A, WANG X F, FANG C C, et al. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes[J]. Chemical Reviews, 2020, 120(14): 6878-6933. |
73 | XIAO Y H, WANG Y, BO S H, et al. Understanding interface stability in solid-state batteries[J]. Nature Reviews Materials, 2019, 5(2): 105-126. |
74 | FITZHUGH W, WU F, YE L H, et al. A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors[J]. Advanced Energy Materials, 2019, 9(21): 1900807. |
75 | XU L, TANG S, CHENG Y, et al. Interfaces in solid-state lithium batteries[J]. Joule, 2018, 2(10): 1991-2015. |
76 | JÜRGEN J, ZEIER WOLFGANG G. Challenges in speeding up solid-state battery development[J]. Nature Energy, 2023, 8(3): 230-240. |
77 | RIEGGER L M, SCHLEM R, SANN J, et al. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries[J]. Angewandte Chemie (International Ed in English), 2021, 60(12): 6718-6723. |
78 | JI W X, ZHENG D, ZHANG X X, et al. A kinetically stable anode interface for Li3YCl6-based all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2021, 9(26): 15012-15018. |
79 | PARK C M, KIM J H, KIM H, et al. Li-alloy based anode materials for Li secondary batteries[J]. Chemical Society Reviews, 2010, 39(8): 3115-3141. |
80 | TAN D H S, CHEN Y T, YANG H D, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes[J]. Science, 2021, 373(6562): 1494-1499. |
81 | HÄNSEL C, SINGH B, KIWIC D, et al. Favorable interfacial chemomechanics enables stable cycling of high-Li-content Li-In/Sn anodes in sulfide electrolyte-based solid-state batteries[J]. Chemistry of Materials, 2021, 33(15): 6029-6040. |
82 | PAN H, ZHANG M H, CHENG Z, et al. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Science Advances, 2022, 8(15): eabn4372. |
83 | LU Y, ZHAO C Z, ZHANG R, et al. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes[J]. Science Advances, 2021, 7(38): eabi5520. |
84 | SHI X M, ZENG Z C, SUN M Z, et al. Fast Li-ion conductor of Li3HoBr6 for stable all-solid-state lithium-sulfur battery[J]. Nano Letters, 2021, 21(21): 9325-9331. |
85 | LI X N, LIANG J W, KIM J T, et al. Highly stable halide-electrolyte-based all-solid-state Li-Se batteries[J]. Advanced Materials, 2022, 34(20): 2200856. |
86 | PITZER K S. The nature of the chemical bond and the structure of molecules and crystals: An introduction to modern structural chemistry[J]. Journal of the American Chemical Society, 1960, 82(15): 4121. |
87 | Ashcroft, N., Mermin, N. Solid State Physics, Holt, Rinehart and Winston[J]. New York. 1976, 2005: 403. |
88 | JANG J, CHEN Y T, DEYSHER G, et al. Enabling a co-free, high-voltage LiNi0.5Mn1.5O4 cathode in all-solid-state batteries with a halide electrolyte[J]. ACS Energy Letters, 2022, 7(8): 2531-2539. |
89 | NIKODIMOS Y, SU W N, HWANG B J. Halide solid-state electrolytes: Stability and application for high voltage all-solid-state Li batteries[J]. Advanced Energy Materials, 2023, 13(3): 2202854. |
90 | KOCHETKOV I, ZUO T T, RUESS R, et al. Different interfacial reactivity of lithium metal chloride electrolytes with high voltage cathodes determines solid-state battery performance[J]. Energy & Environmental Science, 2022, 15(9): 3933-3944. |
91 | LI X N, LIANG J W, YANG X F, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy & Environmental Science, 2020, 13(5): 1429-1461. |
92 | ZHAO F P, ALAHAKOON S H, ADAIR K, et al. An air-stable and Li-metal-compatible glass-ceramic electrolyte enabling high-performance all-solid-state Li metal batteries[J]. Advanced Materials, 2021, 33(8): 2006577. |
93 | LI X N, LIANG J W, ADAIR K R, et al. Origin of superionic Li3Y1– xInxCl6 halide solid electrolytes with high humidity tolerance[J]. Nano Letters, 2020, 20(6): 4384-4392. |
94 | LI W H, LIANG J W, LI M S, et al. Unraveling the origin of moisture stability of halide solid-state electrolytes by in situ and Operando synchrotron X-ray analytical techniques[J]. Chemistry of Materials, 2020, 32(16): 7019-7027. |
95 | KATO Y, SHIOTANI S, MORITA K, et al. All-solid-state batteries with thick electrode configurations[J]. The Journal of Physical Chemistry Letters, 2018, 9(3): 607-613. |
96 | LI Y X, SONG S B, KIM H, et al. A lithium superionic conductor for millimeter-thick battery electrode[J]. Science, 2023, 381(6653): 50-53. |
[1] | Mingming SUN. Patent analysis of organic-inorganic composite solid-state electrolytes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 1096-1105. |
[2] | Huan LIU, Na PENG, Qingwen GAO, Wenpeng LI, Zhirong YANG, Jingtao WANG. Crown ether-doped polymer solid electrolyte for high-performance all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2401-2411. |
[3] | Lei LEI, Peng GAO, Nana FENG, Kunpeng CAI, Hai ZHANG, Yang ZHANG. The influences of multifactors in the synthesis progress on the characteristics of lithium lanthanum zirconate solid electrolytes [J]. Energy Storage Science and Technology, 2023, 12(5): 1625-1635. |
[4] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[5] | Qingwen GAO, Zhihao YANG, Wenpeng LI, Wenjia WU, Jingtao WANG. Preparation and performance of Co2+-doped CeO2-based laminar composite solid-state electrolyte [J]. Energy Storage Science and Technology, 2022, 11(12): 3776-3786. |
[6] | Xinxin ZHU, Wei JIANG, Zhengwei WAN, Shu ZHAO, Zeheng LI, Liguang WANG, Wenbin NI, Min LING, Chengdu LIANG. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 848-862. |
[7] | Shangsen CHI, Yidong JIANG, Qingrong WANG, Ziwei YE, Kai YU, Jun MA, Jun JIN, Jun WANG, Chaoyang WANG, Zhaoyin WEN, Yonghong DENG. The liquid electrolyte modified interface between garnet-type solid-state electrolyte and lithium anode [J]. Energy Storage Science and Technology, 2021, 10(3): 914-924. |
[8] | Wenlin YAN, Fan WU, Hong LI, Liquan CHEN. Application of Si-based anodes in sulfide solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 821-835. |
[9] | Yongsheng GAO, Guanghai CHEN, Xinran WANG, Ying BAI, Chuan WU. Safety of electrolytes for sodium-ion batteries: Strategies and progress [J]. Energy Storage Science and Technology, 2020, 9(5): 1309-1317. |
[10] | ZHOU Hong, WEI Feng, WU Yongqing. Research on the development of inorganic solid-state electrolyte for lithium battery based on patent analysis [J]. Energy Storage Science and Technology, 2020, 9(3): 1001-1007. |
[11] | YANG Jianfeng, LI Linyan, WU Zhenyue, WANG Kaixue. Progress of inorganic solid electrolyte for lithium ion batteries [J]. Energy Storage Science and Technology, 2019, 8(5): 829-837. |
[12] | YANG Kaihua, LIAO Zhu, LI Xuesong, ZHANG Zhengxi, YANG Li. Novel ionic plastic crystal-polymeric ionic liquid all-solid-state electrolytes for lithium ion batteries [J]. Energy Storage Science and Technology, 2018, 7(6): 1113-1119. |
[13] | LIU Lilu1, QI Xingguo1, SHAO Yuanjun1, PAN Du1,2, BAI Ying2, HU Yongsheng1, LI Hong1, CHEN Liquan1. Research progress on sodium ion solid-state electrolytes [J]. Energy Storage Science and Technology, 2017, 6(5): 961-980. |
[14] | XIE Qingshui, WANG Laisen, PENG Dongliang. Project “Basic research on high efficiency energy storage devices based on nanostructured materials” [J]. Energy Storage Science and Technology, 2017, 6(1): 162-164. |
[15] | LIU Guanwei1,2, ZHANG Yichi1,2, CI Song1,2, YU Zhanqing1,2, ZENG Rong1,2. Research progress on flexible electrochemical energy storage devices [J]. Energy Storage Science and Technology, 2017, 6(1): 52-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||