Energy Storage Science and Technology
Pingchuan YANG1(
), Yuhan FANG3, Wenwei LAI3, Changhui LIU2(
)
Received:2025-08-25
Revised:2025-09-21
Online:2025-10-09
Contact:
Changhui LIU
E-mail:yang.pch@163.com;liuch915@cumt.edu.cn
CLC Number:
Pingchuan YANG, Yuhan FANG, Wenwei LAI, Changhui LIU. Preparation and Thermophysical Properties Study of Composite Phase Change Materials Based on Carbon Materials Derived from Waste Cigarette Butts[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0762.
Table 2
Latent heat and phase transition temperature of PA-SA-PW-based composites"
| 样品 | 熔点Tm(℃) | 熔化潜热hm (J∙g-1) | 结晶点Tc(℃) | 结晶潜热hc (J·g-1) | ||
|---|---|---|---|---|---|---|
| PA-SA-PW | 30.30 | 44.84 | 205.31 | 37.85 | 51.31 | 192.80 |
| PA-SA-PW/WCBC0.01 | 25.47 | 47.20 | 193.65 | 39.02 | 49.46 | 181.96 |
| PA-SA-PW/WCBC0.02 | 26.08 | 45.93 | 182.05 | 37.98 | 49.55 | 172.67 |
| PA-SA-PW/WCBC0.03 | 25.44 | 46.34 | 176.87 | 38.85 | 51.28 | 166.56 |
| PA-SA-PW/WCBC0.04 | 25.86 | 46.69 | 173.16 | 41.54 | 50.11 | 161.07 |
| PA-SA-PW/WCBC0.05 | 24.27 | 45.61 | 160.72 | 40.18 | 48.94 | 151.83 |
| [1] | Hu W, Duan Y, Li D, et al. Optimizing the indoor thermal environment and daylight performance of buildings with PCM glazing[J]. Energy and Buildings, 2024, 318: 114481. |
| [2] | LOSI G, BONZANINI A, AQUINO A, et al. Analysis of thermal comfort in a football stadium designed for hot and humid climates by CFD[J]. Journal of Building Engineering, 2021, 33: 101599. |
| [3] | 牛红培.相变储能材料在节能建筑设计中的应用[J].储能科学与技术,2024,13(03):847-849. |
| NIU Hongpei. Research on the application of phase change energy storage materials in energy saving building design[J]. Energy Storage Science and Technology, 2024,13(03):847-849. | |
| [4] | TAN Q, SIROUX M. Evaluation and optimization of PCM-integrated walls: energy, exergy, environmental, and economic perspectives[J]. Renewable and Sustainable Energy Reviews, 2025, 222: 115922. |
| [5] | VIGHNESH R, PAROL V, ANAND K B. Optimized parameters for novel shape stabilized PCM into porous vermiculite integrated in concrete roofings-a sustainable approach[J]. Construction and Building Materials, 2025, 490: 142566. |
| [6] | XIAO J, ZOU B, LIU C, Et al. Carbonized loofah sponge fragments enhanced phase change thermal energy storage: Preparation and thermophysical property analysis[J]. Applied Thermal Engineering, 2024,242: 122505. |
| [7] | 张新宇,罗声豪,吴颖欣,等.复合相变材料用于锂离子电池热管理和热失控防护研究进展[J].储能科学与技术, 2025,14(03):1040-1053. |
| ZHANG X, LUO S, WU Y, et al. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries[J]. Energy Storage Science and Technology, 2025,14(03):1040-1053. | |
| [8] | XIAO J, ZOU B, ZHONG F, ET AL. Phase change energy storage using boron nitride/carbonized loofah sponge[J]. Applied Thermal Engineering, 2024, 257:124182. |
| [9] | 朱郑洋,李小姗,罗聪,等.基于二元双峰相变储热材料的电池热管理系统及其热适应性研究[J/].洁净煤技术,1-11[2025-09-21].https://link.cnki.net/urlid/11.3676.TD.20250508.1115.012. |
| Zhu Z Y, Li X S, Luo C, et al. Investigations on thermal adaptability of battery thermal management system based on binary double-peak phase change materials[J]. Clean Coal Technology, 2025: 1-11. (2025-05-08). https://link.cnki.net/urlid/11.3676.TD.20250508.1115.012. | |
| [10] | 孟凡康,彭栋坤,蔡鹏.严寒地区相变日光温室蓄放热性能模拟研究[J].储能科学与技术,2025,14(06):2532-2539. |
| MENG F, PENG D, CAI P. Simulation of the heat storage and release performance of a phase-change solar greenhouse in a severely cold area[J]. Energy Storage Science and Technology, 2025,14(06):2532-2539. | |
| [11] | WANG R, PEI Y, GU Y, et al. Improved biohydrogen evolution by activated carbon derived from cigarette butts[J]. International Journal of Hydrogen Energy, 2025, 115: 49-59. |
| [12] | MUTHANNA J, BASSIM H, MOONIS A. Recent progress on carbonaceous materials-based adsorbents derived from cigarette wastes for sustainable remediation of aquatic pollutants: A review[J]. Journal of Analytical and Applied Pyrolysis, 2024, 183: 106779. |
| [13] | LIU C, WANG J, ZHANG S, et al. Ultramicropore-rich N-doped porous biochar from discarded cigarette butts for efficient CO2 capture with ultra-high adsorption capacity and selectivity[J]. Separation and Purification Technology, 2025, 358: 130205. DOI:10.1016/j.seppur.2024.130205 |
| [14] | YANG P, YANG L. Top-down hydrothermal carbonization of discarded cigarette butts for optimizing ammonia adsorption performance of carbon microsphere materials[J]. Separation and Purification Technology, 2025, 369: 132997. DOI: 10.1016/j.seppur.2025.132997. |
| [15] | ZHANG Q, CHENG Y, FANG C, et al. Facile synthesis of porous carbon/Fe3O4 composites derived from waste cellulose acetate by one-step carbothermal method as a recyclable adsorbent for dyes[J]. Journal of Materials Research and Technology, 2020, 9(3): 3384-3393. |
| [16] | LI P, CHEN Y, LIN Y, et al. Research progress on the preparation of high-value carbon materials by biomass pyrolysis[J]. Biomass and Bioenergy, 2025, 193: 107520. |
| [17] | JANKOVIĆ B, KOJIĆ M, MILOŠEVIĆ M, et al. Upcycling of the used cigarette butt filters through pyrolysis process: detailed kinetic mechanism with bio-char characterization[J]. Polymers, 2023, 15(14): 3054. |
| [18] | GUO Z, HAN X, ZHANG C, et al. Activation of biomass-derived porous carbon for supercapacitors: A review[J]. Chinese Chemical Letters, 2024, 35: 109007. |
| [19] | MOTA-RESENDIZ K, SÁNCHEZ-SILVA J M, FORGIONNY A, et al. Valorization of waste cigarette butts into high-performance activated carbons for water remediation[J]. Journal of Water Process Engineering, 2025, 75: 107998. |
| [20] | ZHANG X, YU M, LI Y, et al. Effectiveness of discarded cigarette butts derived carbonaceous adsorbent for heavy metals removal from water[J]. Microchemical Journal, 2021, 168: 106474. |
| [21] | LI L, JIA C, ZHU X, et al. Utilization of cigarette butt waste as functional carbon precursor for supercapacitors and adsorbents[J]. Journal of Cleaner Production, 2020, 256: 120326. |
| [22] | HEKIMOĞLU G, SARI A, ARUNACHALAM S, et al. Porous biochar/heptadecane composite phase change material with leak-proof, high thermal energy storage capacity and enhanced thermal conductivity[J]. Powder Technology, 2021, 394: 1017-1025. |
| [23] | DALMAZ A, SİVRİKAYA ÖZAK S. Methylene blue dye efficient removal using activated carbon developed from waste cigarette butts: adsorption, thermodynamic and kinetics[J]. Fuel, 2024, 372: 132151. |
| [24] | 方钰涵, 钟湘宇, 于皓, 等. FeCoNC碳材料增强复合相变材料热物性与储热性能研究[J]. 化工学报, DOI: 10.11949/0438-1157.20250719. |
| FANG Y, ZHONG X, YU H, et al. Research on the thermal physical properties and heat storage performance of FeCoNC carbon material-reinforced composite phase change materials[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250719. | |
| [25] | WEN R, LIU Y, YANG C, et al. Enhanced thermal properties of stearic acid/carbonized maize straw composite phase change material for thermal energy storage in buildings[J]. Journal of Energy Storage, 2021, 36: 102420. |
| [26] | ZHANG Q, ZHANG Z, LI B, et al. Highly dispersed Ag quantum dots anchored on palmitic acid/ graphitic carbon nitride composite phase change materials for enhanced photo-thermal storage[J]. Journal of Alloys and Compounds, 2024, 1003: 175602. |
| [27] | ZHOU L, WANG X, WU Q, et al. Carbon nanotube sponge encapsulated ag-MWCNTs/PW composite phase change materials with enhanced thermal conductivity, high solar-/electric-thermal energy conversion and storage[J]. Journal of Energy Storage, 2024, 84: 110925. |
| [28] | 陈莎,陈岳浩,孙小琴,等.碳基纳米石蜡复合相变储能材料制备与性能研究[J].储能科学与技术,2024,13(12):4349-4356. |
| CHEN Sha, CHEN Yuehao, SUN Xiaoqin, et al. Preparation and properties of nano-carbon-based composite paraffin phase-change materials[J]. Energy Storage Science and Technology,2024,13(12):4349-4356. | |
| [29] | CHANG X L, YAN T, PAN W G, et al. Synergistic enhancement of metal–organic framework-derived hierarchical porous materials towards photothermal conversion and storage properties of phase change materials[J]. Applied Thermal Engineering, 2024, 255: 124046. |
| [30] | XIAO J, REN J, ZOU L, et al. Carbonized scrapped tire rubber to enhance thermal energy storage performance [J]. Journal of Energy Storage, 2025, 110:115276. |
| [31] | XIAO J, ZHONG X, REN J, et al. High value-added utilization of waste asphalt: Enhance phase change energy storage performance using simple carbonization for solar energy harvesting[J]. Solar Energy Materials and Solar Cells, 2025, 282: 113434. |
| [1] | Qifa GAO, Nan ZHANG, Zhaoli ZHANG, Yanxia DU, Yanping YUAN. Influence of copper foam on the heat transfer and temperature control characteristics of phase change materials under different force fields [J]. Energy Storage Science and Technology, 2025, 14(9): 3301-3310. |
| [2] | Yanping YUAN, Qifa GAO, Nan ZHANG, Qinrong SUN. Numerical analysis of thermal storage characteristics of gradient-porosity copper foam-enhanced phase change materials [J]. Energy Storage Science and Technology, 2025, 14(8): 3100-3109. |
| [3] | Honghui LIU, Donghui LI, Qifeng QIAN, Lingchao XIAO, Lei XIONG, Zhongguo CHEN. Preparation of vanadium nitride-based electrode materials and their application progress in supercapacitors [J]. Energy Storage Science and Technology, 2025, 14(8): 3110-3121. |
| [4] | Taotao LIU, Shaopeng ZHANG, Yifei WANG, Xipeng LIN. Organic porous shape-stabilized composite phase change materials for thermal energy storage: A review [J]. Energy Storage Science and Technology, 2025, 14(7): 2635-2653. |
| [5] | Rusong YANG, Zhaoxia HOU, Wei LI, Haoran WANG, Xu GAO, Haibo LONG. Preparation of PANI/MnO2/rGO-P ternary composite electrode and its application in supercapacitors [J]. Energy Storage Science and Technology, 2025, 14(7): 2791-2800. |
| [6] | Fankang MENG, Dongkun PENG, Peng CAI. Simulation of the heat storage and release performance of a phase-change solar greenhouse in a severely cold area [J]. Energy Storage Science and Technology, 2025, 14(6): 2532-2539. |
| [7] | Yiming LI, Jinghao YAN, Li'na XI, Xiaobing SUN, Minggao LIU, Jie LI, Xiaoqin SUN. Numerical simulation study on the thermal storage performance of eccentric tubular phase change thermal storage units filled with composite phase change materials/metal foam [J]. Energy Storage Science and Technology, 2025, 14(5): 1931-1942. |
| [8] | Yong LI, Yufei ZHAO, Chunyu SONG, Shihao LIU, Suxia MA. Research on the performance of air source heat pumps with quasi-two-stage compression coupled energy storage devices [J]. Energy Storage Science and Technology, 2025, 14(5): 1991-1999. |
| [9] | Bin YANG, Xiangjing YU, Yang ZHENG, Shixuan YANG, Qirong YANG, Daliang QIAO, Yang SUN, Youping LI. Numerical analysis of fin optimization for a shell-and-tube phase change energy storage heat exchanger [J]. Energy Storage Science and Technology, 2025, 14(4): 1394-1412. |
| [10] | Zhe HUANG, Zhiming YU, Zhaojin QING, Zhaoli ZHANG. Heat transfer characteristics of spherical thermal storage units based on PW/SEBS/EG composite phase change materials in a rotating fluid medium [J]. Energy Storage Science and Technology, 2025, 14(4): 1413-1423. |
| [11] | Ruixing QUAN, Wenjing MIAO, Changshun YUAN, Guanggui CHNEG, Yanqi ZHAO. Advancements in polyethylene glycol-based form-stable composite phase change materials [J]. Energy Storage Science and Technology, 2025, 14(3): 1010-1025. |
| [12] | Liping ZHOU, Deqing ZHOU, Fenghua ZHENG, Qichang PAN, Sijiang HU, Yongjie JIANG, Hongqiang WANG, Qingyu LI. Preparation and application of Si@void@C composite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1115-1122. |
| [13] | Xinyu ZHANG, Shenghao LUO, Yingxin WU, Zhenying LIU, Lizhi ZHANG, Ziye LING. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1040-1053. |
| [14] | Yixuan LIU, Xiaofen REN, Shanhu TONG, Zhiguo SHI, Xiaohui SHE. Cooling performance of air-cooled evaporator based on phase-change cold storage [J]. Energy Storage Science and Technology, 2025, 14(2): 505-514. |
| [15] | Yan CHEN, Ziqi LI, Nanhao CHEN, Yichi ZHANG, Xiaohong WU, Dazhu CHEN. Advances in polymeric solid-solid phase change materials based on polyethylene glycol [J]. Energy Storage Science and Technology, 2025, 14(1): 124-139. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||