Energy Storage Science and Technology ›› 2013, Vol. 2 ›› Issue (5): 451-459.doi: 10.3969/j.issn.2095-4239.2013.05.002
• Invited reviews • Previous Articles Next Articles
LING Ziye1, FANG Xiaoming1, WANG Shuangfeng1, ZHANG Zhengguo1, LIU Xiaohong2
Received:
2013-05-22
Online:
2013-10-19
Published:
2013-10-19
CLC Number:
LING Ziye, FANG Xiaoming, WANG Shuangfeng, ZHANG Zhengguo, LIU Xiaohong. Thermal management of lithium-ion batteries using phase change materials[J]. Energy Storage Science and Technology, 2013, 2(5): 451-459.
[1] Zhou J,Notten P H L. Studies on the degradation of Li-ion batteries by the use of microreference electrodes[J]. Journal of Power Sources ,2008,177(2):553-560. [2] Kizilel R,Sabbah R,Selman J R,Al-Hallaj S. An alternative cooling system to enhance the safety of Li-ion battery packs[J]. Journal of Power Sources ,2009,194(2):1105-1112. [3] Sabbah R,Kizilel R,Selman J R,Al-Hallaj S. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs:Limitation of temperature rise and uniformity of temperature distribution[J] . Journal of Power Sources ,2008,182(2):630-638. [4] Al-Hallaj S,Selman J R. A novel thermal management system for electric vehicle batteries using phase-change material[J] . Journal of the Electrochemical Society ,2000,147(9):3231-3236. [5] Vetter J,Novák P,Wagner M R, et al . Ageing mechanisms in lithium-ion batteries[J] . Journal of Power Sources ,2005,147(1-2):269-281. [6] Bandhauer T M,Garimella S,Fuller T F. A critical review of thermal issues in lithium-ion batteries[J] . Journal of the Electrochemical Society ,2011,158(3):R1-R25. [7] Ramadass P,Haran B,White R, et al . Capacity fade of Sony 18650 cells cycled at elevated temperatures part I:Cycling performance[J] . Journal of Power Sources ,2002,112(2):606-613. [8] Broussely M,Biensan Ph,Bonhomme F, et al . Main aging mechanisms in Li-ion batteries[J] . Journal of Power Sources ,2005,146(1-2):90-96. [9] Zhang Y C,Wang C Y,Tang X D. Cycling degradation of an automotive LiFePO 4 lithium-ion battery[J] . Journal of Power Sources ,2011,196(3):1513-1520. [10] Liu P,Wang J, Hicks-Garner J, et al . Aging mechanisms of LiFePO 4 batteries deduced by electrochemical and structural analyses[J] . Journal of the Electrochemical Society ,2010,157(4):A499-A507. [11] Amine K,Liu J,Belharouak I. High-temperature storage and cycling of C-LiFePO 4 /graphite Li-ion cells[J] . Electrochemistry Communications , 2005,7(7):669-673. [12] Shim J,Kostecki R,Richardson T, et al . Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature[J] . Journal of Power Sources ,2002,112(1):222-230. [13] Ramadass P,Haran B,White R, et al . Capacity fade of Sony 18650 cells cycled at elevated temperatures Part II:Capacity fade analysis[J] . Journal of Power Sources ,2002,112(2):614-620. [14] Ehrlich G M. Handbook of Batteries[M]. 3rd ed,New York:McGraw-Hill,2002. [15] Kelly K J,Mihalic M,Zolot M. Battery usage and thermal performance of the Toyota Prius and Honda Insight during chassis dynamometer testing(XVII):The seventeenth annual battery conference on applications and advances[C] // Seventeenth Annual Battery Conference on Applications and Advances,Proceedings,2002:247-252. [16] Zolot M D,Kelly K,Keyser M, et al . Thermal evaluation of the Honda insight battery pack[C]//The 36th Intersociety Energy Conversion Engineering Conference,2001. [17] Matthew Z,Ahmad A P,Mark M. Thermal evaluation of Toyota prius battery pack[C]//Future Car Congress,2002. [18] Ahmad P,Andreas V,Thomas S. Cooling and preheating of batteries in hybrid electric vehicles[C]//The 6th ASME-JSME Thermal Engineering Joint Conference,2003. [19] Che Dulan(车杜兰),Zhou Rong(周荣),Qiao Weigao(乔维高). 电动汽车电池包散热加热设计[J]. Beijing Automotive Engineering (北京汽车),2010,1(1):5-7. [20] Zolot M D, et al . Thermal evaluation of the Honda insight battery pack[C]//Intersociety Energy Conversion Engineering Conference,2001. [21] Chen Yongchong(陈永翀),Wang qiuping(王秋平).V2G or VEG?An investigation into the business model for future electric vehicles based on technological developments[J]. Energy Storage Science and Tochnology (储能科学与技术),2013,2(3):307-311. [22] Ahmad A P. Battery thermal management in EVs and HEVs:Issues and solutions[C]//Advanced Automotive Battery Conference,2001. [23] Nelson P,Dees D,Amine K, et al . Modeling thermal management of lithium-ion PNGV batteries[J] . Journal of Power Sources ,2002,110(2):349-356. [24] Wu Z J(吴忠杰),Zhang G Q(张国庆). The Liquid cooling system of the Ni-MH battery pack for hybrid electric vehicles[J]. Journal of Guangdong University of Technology (广东工业大学学报),2008,24(5):28-31. [25] Zhang G Q(张国庆),Wu zhongjie(吴忠杰),Rao zhong hao(饶中浩), et al . Experimental invesitigation on heat pipe cooling effect for power battery[J] . Chemical Industry and Engineering Progress (化工进展),2009,28(7):1165-1168. [26] Rao Z H,Wang S F,Wu M C, et al . Experimental investigation on thermal management of electric vehicle battery with heat pipe[J] . Energy Conversion and Management ,2013,65:92-97. [27] Khateeb S A,Farid M M,Selman J R, et al . Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter[J] . Journal of Power Sources ,2004,128(2):292-307. [28] Mills A,Al-Hallaj S. Simulation of passive thermal management system for lithium-ion battery packs[J] . Journal of Power Sources ,2005,141(2):307-315. [29] Zhang Z G,Fang X M. Study on paraffin/expanded graphite composite phase change thermal energy storage material[J] . Energy Conversion and Management ,2006,47(3):303-310. [30] Mills A,Farid M,Selman J R, et al . Thermal conductivity enhancement of phase change materials using a graphite matrix[J] . Applied Thermal Engineering ,2006,26(14-15):1652-1661. [31] Li M,Wu Z S. Thermal properties of the graphite/n-docosane composite PCM[J] . Journal of Thermal Analysis and Calorimetry ,2013,111(1):77-83. [32] Cheng W L,zhang R M,Xie k, et al . Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition:Preparation and thermal properties[J] . Solar Energy Materials and Solar Cells ,2010,94(10):1636-1642. [33] Darkwa J,Zhou T. Enhanced laminated composite phase change material for energy storage[J] . Energy Conversion and Management ,2011,52(2):810-815. [34] Hasse C,Grenet M,Bontemps A, et al . Realization, test and modelling of honeycomb wallboards containing a phase change material[J] . Energy and Buildings ,2011,43(1):232-238. [35] Karaipekli A,Sari A,Kaygusuz K. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications[J] . Renewable Energy ,2007,32(13):2201-2210. [36] Li H,Liu X,Fang G Y. Synthesis and characteristics of form-stable n-octadecane/expanded graphite composite phase change materials[J] . Applied Physics A:Materials Science & Processing ,2010,100(4):1143-1148. [37] Sari A,Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J] . Applied Thermal Engineering ,2007,27(8-9):1271-1277. [38] Wang W L,Yang X X,Fang Y T, et al . Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage[J] . Applied Energy ,2009,86(9):1479-1483. [39] Zeng J L,Cao Z,Yang D W, et al . Thermal conductivity enhancement of Ag nanowires on an organic phase change material[J] . Journal of Thermal Analysis and Calorimetry ,2010,101(1):385-389. [40] Zhang H Z,Wang X D,Wu D Z. Silica encapsulation of n-octadecane via sol-gel process:A novel microencapsulated phase-change material with enhanced thermal conductivity and performance[J]. Journal of Colloid and Interface Science ,2010,343(1):246-255. [41] Zhang X W. Thermal analysis of a cylindrical lithium-ion battery[J] . Electrochimica Acta ,2011,56(3):1246-1255. [42] Ramandi M,Dincer I,Naterer G. Heat transfer and thermal management of electric vehicle batteries with phase change materials[J] . Heat and Mass Transfer ,2011,47(7):777-788. [43] Al-Hallaj S,Albright G. Energy storage thermal management system using multi-temperature phase change materials:US,041361[P]. 2012-12-13. [44] Somasundaram K,Birgersson E,Mujumdar A S. Thermal-electrochemical model for passive thermal management of a spiral-wound lithium-ion battery[J]. Journal of Power Sources ,2012,203:84-96. [45] Duan X,Naterer G F. Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J] . International Journal of Heat and Mass Transfer ,2010,53(23-24):5176-5182. [46] Al-Hallaj S,Selman J R. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications[J] . Journal of Power Sources ,2002,110(2):341-348. [47] Rao Z H,Wang S F,Zhang Y L. Simulation of heat dissipation with phase change material for cylindrical power battery[J] . Journal of the Energy Institute ,2012,85(1):38-43. [48] Khateeb S A,Amiruddin S,Farid M, et al . Thermal management of Li-ion battery with phase change material for electric scooters: Experimental validation[J] . Journal of Power Sources ,2005,142(1-2):345-353. [49] Cao J H,Gao D W,Liu J X, et al . Thermal modeling of passive thermal management system with phase change material for LiFePO 4 battery[C] // 2012 IEEE Vehicle Power and Propulsion Conference (VPPC),2012:436-440. [50] Rao Zhonghao,Wang Shuangfeng,Zhang Guoqing. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO 4 power battery[J] . Energy Conversion and Management ,2011,52(12):3408-3414. [51] Kizilel R,Lateef A,Sabbah R, et al . Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature[J] . Journal of Power Sources ,2008,183(1):370-375. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[6] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
[7] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[8] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[9] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[10] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[11] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
[12] | Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. |
[13] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[14] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[15] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||