Energy Storage Science and Technology ›› 2013, Vol. 2 ›› Issue (5): 468-479.doi: 10.3969/j.issn.2095-4239.2013.05.004
• Research highlight • Previous Articles Next Articles
XU Kaiqi, LIN Mingxiang, TANG Daichun, DONG Jinping, SUN Yang, YAN Yong, CHEN Bin, WANG Hao, BEN Liubin, HUANG Xuejie
Received:
2013-08-20
Revised:
2013-08-25
Online:
2013-10-19
Published:
2013-10-19
CLC Number:
XU Kaiqi, LIN Mingxiang, TANG Daichun, DONG Jinping, SUN Yang, YAN Yong, CHEN Bin, WANG Hao, BEN Liubin, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(June 1,2013 to July 31,2013)[J]. Energy Storage Science and Technology, 2013, 2(5): 468-479.
[1] Yu H J,Ishikawa R,So Y G, et al. Direct atomic-resolution observation of two phases in the Li 1.2 Mn 0.567 Ni 0.166 Co 0.067 O 2 cathode material for lithium-ion batteries[J]. Angewandte Chemie. International Edition ,2013,52(23):5969-5973. [2] Takamatsu D,Mori S,Orikasa Y, et al. Effects of ZrO 2 coating on LiCoO 2 thin-film electrode studied by in situ X-ray absorption spectroscopy[J]. Journal of The Electrochemical Society ,2013,160(5):A3054-A3060. [3] Mohanty D,Sefat A S,Kalnaus S, et al. Investigating phase transformation in the Li 1.2 Co 0.1 Mn 0.55 Ni 0.15 O 2 lithium-ion battery cathode during high-voltage hold(4.5 V) via magnetic,X-ray diffraction and electron microscopy studies[J]. Journal of Materials Chemistry A ,2013,1(20): 6249-6261. [4] Bie X F,Du F,Wang Y H, et al. Relationships between the crystal/interfacial properties and electrochemical performance of LiNi 0.33 Co 0.33 Mn 0.33 O 2 in the voltage window of 2.5~4.6 V[J]. Electrochimica Acta ,2013,97:357-363. [5] Fell C R,Qian D N,Carroll K J, et al. Correlation between oxygen vacancy, microstrain, and cation distribution in lithium-excess layered oxides during the first electrochemical cycle[J]. Chemistry of Materials ,2013,25(9):1621-1629. [6] Yamada H,Zhao W W,Noguchi H. Relation between crystallinity and electrochemical properties of Li Li 1/5 NiVMn 3/5 O 2 [J]. Electrochemistry ,2013,81(6):460-466. [7] Koga H,Croguennec L,Menetrier M, et al. Different oxygen redox participation for bulk and surface:A possible global explanation for the cycling mechanism of Li 1.20 Mn 0.54 CO 0.13 Ni 0.13 O 2 [J]. Journal of Power Sources ,2013,236:250-258. [8] Koga H,Croguennec L,Menetrier M, et al. Reversible oxygen participation to the redox processes revealed for Li 1.20 Mn 0.54 Co 0.13 Ni 0.13 O 2 [J]. Journal of The Electrochemical Society ,2013,160(6):A786-A792. [9] Lu W Q,Wu Q L,Dees D W. Electrochemical characterization of lithium and manganese rich composite material for lithium ion batteries[J]. Journal of The Electrochemical Society ,2013,160(6):A950-A954. [10] Gutierrez A,Manthiram A. Understanding the effects of cationic and anionic substitutions in spinel cathodes of lithium-ion batteries[J]. Journal of The Electrochemical Society ,2013,160(6):A901-A905. [11] Gu Y P,Taniguchi K,Tajima R ,et al. A new "zero-strain" material for electrochemical lithium insertion[J]. Journal of Materials Chemistry A ,2013,1(22):6550-6552. [12] Hu L B,Zhang Z C,Amine K. Electrochemical investigation of carbonate-based electrolytes for high voltage lithium-ion cells[J]. Journal of Power Sources ,2013,236:175-180. [13] Hao X G,Bartlett B M. Improving the electrochemical stability of the high-voltage Li-ion battery cathode LiNi 0.5 Mn 1.5 O 4 by titanate-based surface modification[J]. Journal of The Electro- chemical Society ,2013,160(5):A3162-A3170. [14] Kim Y,Dudney N J,Chi M F, et al. A perspective on coatings to stabilize high-voltage cathodes:LiMn 1.5 Ni 0.5 O 4 with sub-nanometer lipon cycled with LiPF 6 electrolyte[J]. Journal of The Electro- chemical Society ,2013,160(5):A3113-A3125. [15] Lin M,Wang S H,Gong Z L, et al. A strategy to improve cyclic performance of LiNi 0.5 Mn 1.5 O 4 in a wide voltage region by Ti-doping[J]. Journal of The Electrochemical Society ,2013,160(5):A3036-A3040. [16] Chong J,Xun S D,Song X Y, et al. Surface stabilized LiNi 0.5 Mn 1.5 O 4 cathode materials with high-rate capability and long cycle life for lithium ion batteries[J]. Nano Energy ,2013,2(2):283-293. [17] Prabakar S J R,Hwang Y H,Lee B, et al. Graphene-sandwiched LiNi 0.5 Mn 1.5 O 4 cathode composites for enhanced high voltage performance in Li ion batteries[J]. Journal of The Electrochemical Society ,2013,160(6):A832-A837. [18] He Y,Yuan F M,Ma H, et al. Influence of Al 3+ ions on the morphology and structure of layered LiMn 1- x Al x O 2 cathode materials for the lithium ion battery[J]. Journal of Alloys and Compounds ,2013,569:67-75. [19] Gu M,Genc A,Belharouak I, et al. Nanoscale phase separation, cation ordering, and surface chemistry in pristine Li 1.2 Ni 0.2 Mn 0.6 O 2 for Li-ion batteries[J]. Chemistry of Materials ,2013,25(11):2319-2326. [20] Carroll K J,Qian D,Fell C, et al. Probing the electrode/electrolyte interface in the lithium excess layered oxide Li 1.2 Ni 0.2 Mn 0.6 O 2 [J]. Physical Chemistry Chemical Physics ,2013,15(26):11128-11138. [21] Madec L,Humbert B,Lestriez B, et al. Covalent vs. non-covalent redox functionalization of C-LiFePO 4 based electrodes[J]. Journal of Power Sources ,2013,232:246-253. [22] Boesenberg U,Meirer F,Liu Y J, et al. Mesoscale phase distribution in single particles of LiFePO 4 following lithium deintercalation[J]. Chemistry of Materials ,2013,25(9):1664-1672. [23] Lv D P,Bai J Y,Zhang P, et al. Understanding the high capacity of Li 2 FeSiO 4 : In situ XRD/XANES study combined with first- principles calculations[J]. Chemistry of Materials ,2013,25(10):2014-2020. [24] Orikasa Y,Maeda T,Koyama Y, et al. Phase transition analysis between LiFePO 4 and FePO 4 by in-situ time-resolved X-ray absorption and X-ray diffraction[J]. Journal of The Electrochemical Society ,2013,160(5):A3061-A3065. [25] Sasaki T,Ukyo Y,Novak P. Memory effect in a lithium-ion battery[J]. Nature Materials ,2013,12(6):569-575. [26] Radhamani A V,Karthik C,Ubic R, et al. Suppression of Fe-Li(center dot)antisite defects in fluorine-doped LiFePO 4 [J]. Scripta Materialia ,2013,69(1):96-99. [27] Fister T T,Goldman J L,Long B R, et al. X-ray diffraction microscopy of lithiated silicon microstructures[J]. Applied Physics Letters ,2013,102(13). [28] Han Z J,Yabuuchi N,Hashimoto S, et al. Cross-linked poly(acrylic acid)with polycarbodiimide as advanced binder for Si/graphite composite negative electrodes in Li-ion batteries[J]. Ecs Electrochemistry Letters ,2013,2(2):A17-A20. [29] Ma Z S,Li T T,Huang Y L, et al. Critical silicon-anode size for averting lithiation-induced mechanical failure of lithium-ion batteries[J]. Rsc Advances ,2013,3(20):7398-7402. [30] Piper D M,Yersak T A,Son S B, et al. Conformal coatings of cyclized-PAN for mechanically resilient Si nano-composite anodes[J]. Advanced Energy Materials ,2013,3(6): 697-702. [31] Xu J,Jin J,Kim K, et al. One-pot galvanic formation of ultrathin-shell Sn/CoO x nanohollows as high performance anode materials in lithium ion batteries[J]. Chemical Communications ,2013,49(53):5981-5983. [32] Klavetter K C,Wood S M,Lin Y M, et al. A high-rate germanium-particle slurry cast Li-ion anode with high coulombic efficiency and long cycle life[J]. Journal of Power Sources ,2013, 238:123-136. [33] Tritsaris G A,Kaxiras E,MENG S, et al. Adsorption and diffusion of lithium on layered silicon for Li-ion storage[J]. Nano Letters ,2013,13(5):2258-2263. [34] Jung D S,Hwang T H,Park S B, et al. Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries[J]. Nano Letters ,2013,13(5):2092-2097. [35] Nithya C,Gopukumar S. Reduced graphite oxide/nano Sn:A superior composite anode material for rechargeable lithium-ion batteries[J]. Chemsuschem. ,2013,6(5):898-904. [36] Sun Y M,Hu X L,Luo W, et al. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries[J]. Advanced Functional Materials ,2013,23(19):2436-2444. [37] Hao X G,Bartlett B M. Li 4 Ti 5 O 12 nanocrystals synthesized by carbon templating from solution precursors yield high performance thin film Li-ion battery electrodes[J]. Advanced Energy Materials ,2013,3(6):753-761. [38] Prabakar S J R,Hwang Y H,Bae E G, et al. SnO 2 /graphene composites with self-assembled alternating oxide and amine layers for high Li-storage and excellent stability[J]. Advanced Materials ,2013,25(24):3307-3312. [39] Kim M S,Bhattacharjya D,Fang B Z, et al. Morphology-dependent Li storage performance of ordered mesoporous carbon as anode material[J]. Langmuir ,2013,29(22):6754-6761. [40] Wei W,Yang S B,Zhou H X, et al. 3D graphene foams cross-linked with pre-encapsulated Fe 3 O 4 nanospheres for enhanced lithium storage[J]. Advanced Materials ,2013,25(21):2909-2914. [41] Yue W B,Jiang S H,Huang W J, et al. Sandwich-structural graphene-based metal oxides as anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A ,2013,1(23):6928-6933. [42] Xing W Y,Wang X,Song L, et al. Synthesis of a Sn-In mixed oxide/graphene hybrid as an electrode material with improved Li-storage properties[J]. Materials Chemistry and Physics ,2013,140(2-3):441-446. [43] Liu B,Abouimrane A,Ren Y, et al. Electrochemical study and material characterization of x SiO center dot(1- x )Sn 30 Co 30 C 40 composite anode material for lithium-ion batteries[J]. Journal of the Electrochemical Society ,2013,160(6):A882-A887. [44] Xun S D,Song X Y,Battaglia V, et al. Conductive polymer binder-enabled cycling of pure Tin nanoparticle composite anode electrodes for a lithium-ion battery[J]. Journal of the Electro - chemical Society ,2013,160(6):A849-A855. [45] Gao X,Fisher C A J,Kimura T, et al. Lithium atom and a-site vacancy distributions in lanthanum lithium titanate[J]. Chemistry of Materials ,2013,25(9):1607-1614. [46] Tan J J,Tiwari A. Fabrication and characterization of Li 7 La 3 Zr 2 O 12 thin films for lithium ion battery[J]. Ecs Solid State Letters ,2012,1(6):Q57-Q60. [47] Kim Y. Investigation of the gas evolution in lithium ion batteries:Effect of free lithium compounds in cathode materials[J]. Journal of Solid State Electrochemistry ,2013,17(7):1961-1965. [48] Zhang Z C,Hu L B,Wu H M, et al. Fluorinated electrolytes for 5 V lithium-ion battery chemistry[J]. Energy & Environmental Science ,2013,6(6):1806-1810. [49] Arbizzani C,De Giorgio F,Porcarelli L, et al. Use of non-conventional electrolyte salt and additives in high-voltage graphite/LiNi 0.4 Mn 1.6 O 4 batteries[J]. Journal of Power Sources ,2013,238:17-20. [50] Tarnopolskiy V,Kalhoff J,Nadherna M, et al. Beneficial influence of succinic anhydride as electrolyte additive on the self-discharge of 5 V LiNi 0.4 Mn 1.6 O 4 cathodes[J]. Journal of Power Sources ,2013,236:39-46. [51] Petrowsky M,Ismail M,Glatzhofer D T, et al. Mass and charge transport in cyclic carbonates:Implications for improved lithium ion battery electrolytes[J]. Journal of Physical Chemistry B ,2013,117(19):5963-5970. [52] Chen Y H,Freunberger S A,Peng Z Q, et al. Charging a Li-O 2 battery using a redox mediator[J]. Nature Chemistry ,2013,5(6):489-494. [53] Li J,Zhang H M,Zhang Y N, et al. A hierarchical porous electrode using a micron-sized honeycomb-like carbon material for high capacity lithium-oxygen batteries[J]. Nanoscale ,2013,5(11):4647-4651. [54] Terashima C,Iwai Y,Cho S P, et al. Solution plasma sputtering processes for the synthesis of PtAu/C catalysts for Li-air batteries[J]. International Journal of Electrochemical Science ,2013,8(4):5407-5420. [55] Takechi K,Higashi S,Mizuno F, et al. Stability of solvents against superoxide radical species for the electrolyte of lithium-air battery[J]. Ecs Electrochemistry Letters ,2012,1(1): A27-A29. [56] Yao K P C,Kwabi D G,Quinlan R A, et al. Thermal stability of Li 2 O 2 and Li 2 O for Li-air batteries: In situ XRD and XPS studies[J]. Journal of The Electrochemical Society ,2013,160(6):A824-A831. [57] Li W Y,Zheng G Y,Yang Y, et al. High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach[J]. Proceedings of the National Academy of Sciences of the United States of America ,2013,110(18):7148-7153. [58] Zhang S S. New insight into liquid electrolyte of rechargeable lithium/sulfur battery[J]. Electrochimica Acta ,2013,97:226-230. [59] Zhang S S. Does the sulfur cathode require good mixing for a liquid electrolyte lithium/sulfur cell?[J]. Electrochemistry Communications ,2013,31:10-12. [60] Tavassol H,Chan M K Y,Catarello M G, et al. Surface coverage and SEI induced electrochemical surface stress changes during Li deposition in a model system for Li-ion battery anodes[J]. Journal of The Electrochemical Society ,2013,160(6):A888-A896. [61] Bottke P,Freude D,Wilkening M. Ultraslow Li exchange processes in diamagnetic Li 2 ZrO 3 as monitored by EXSY NMR[J]. Journal of Physical Chemistry C ,2013,117(16):8114-8119. [62] Davis L J M,Goward G R. Differentiating lithium ion hopping rates in vanadium phosphate versus vanadium fluorophosphate structures using 1D Li-6 selective inversion NMR[J]. Journal of Physical Chemistry C ,2013,117(16):7981-7992. [63] Ishida N,Fujita D. Chemical-state imaging of Li using scanning Auger electron microscopy[J]. Journal of Electron Spectroscopy and Related Phenomena ,2013,186:39-43. [64] Lipson A L,Hersam M C. Conductive scanning probe character- ization and nanopatterning of electronic and energy materials[J]. Journal of Physical Chemistry C ,2013,117(16):7953-7963. [65] Parz P,Fuchsbichler B,Koller S, et al. Charging-induced defect formation in Li x CoO 2 battery cathodes studied by positron annih- ilation spectroscopy[J]. Applied Physics Letters ,2013,102(15). [66] Niehoff P,Passerini S,Winter M. Interface investigations of a commercial lithium ion battery graphite anode material by sputter depth profile X-ray photoelectron spectroscopy[J]. Langmuir ,2013,29(19):5806-5816. [67] La Mantia F,Wessells C D,DESHAZER H D, et al. Reliable reference electrodes for lithium-ion batteries[J]. Electrochemistry Communications ,2013,31:141-144. [68] Ragavendran K R,Lu L,Hwang B J, et al. Trap state spectroscopy of LiM y Mn 2-y O 4 (M=Mn, Ni, Co):Guiding principles for electrochemical performance[J]. Journal of Physical Chemistry C ,2013,117(8):3812-3817. [69] Cai L,An K,Feng Z L, et al. In-situ observation of inhomogeneous degradation in large format Li-ion cells by neutron diffraction[J]. Journal of Power Sources ,2013,236:163-168. [70] Nakagawa H,Domi Y,Doi T, et al. In situ Raman study on the structural degradation of a graphite composite negative-electrode and the influence of the salt in the electrolyte solution[J]. Journal of Power Sources ,2013,236:138-144. [71] Sugiyama J,Mukai K,Harada M, et al. Reactive surface area of the Li x (Co 1/3 Ni 1/3 Mn 1/3 )O 2 electrode determined by μ + SR and electrochemical measurements[J]. Physical Chemistry Chemical Physics ,2013,15(25):10402-10412. [72] Malmgren S,Ciosek K,Hahlin M, et al. Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy[J]. Electrochimica Acta ,2013,97:23-32. [73] Cai L,Liu Z C,An K, et al. Unraveling structural evolution of LiNi 0.5 Mn 1.5 O 4 by in situ neutron diffraction[J]. Journal of Materials Chemistry A ,2013,1(23):6908-6914. [74] Hayamizu K,Aihara Y. Lithium ion diffusion in solid electrolyte (Li 2 S) 7 (P 2 S 5 ) 0 measured by pulsed-gradient spin-echo 7 Li NMR spectroscopy[J]. Solid State Ionics ,2013,238:7-14. [75] Eshetu G G,Grugeon S,Gachot G, et al. LiFSI vs. LiPF 6 electrolytes in contact with lithiated graphite:Comparing thermal stabilities and identification of specific SEI-reinforcing additives[J]. Electrochimica Acta ,2013,102:133-141. [76] Mahootcheianasl N,Kim J H,Pieczonka N P W, et al. Multilayer electrolyte cell:A new tool for identifying electrochemical performances of high voltage cathode materials[J]. Electrochemistry Communications ,2013,32:1-4. [77] Liu D R,Wang Y,Xie Y S, et al. On the stress characteristics of graphite anode in commercial pouch lithium-ion battery[J]. Journal of Power Sources ,2013,232:29-33. [78] Moura S J,Stein J L,Fathy H K. Battery-health conscious power management in plug-in hybrid electric vehicles via electrochemical modeling and stochastic control[J]. IEEE Transactions on Control Systems Technology ,2013,21(3):679-694. [79] Min J H,Bae Y S,Kim J Y, et al. Self-organized artificial SEI for improving the cycling ability of silicon-based battery anode materials[J]. Bulletin of the Korean Chemical Society ,2013, 34(4):1296-1299. [80] Huang S,Fan F,Li J, et al. Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries[J]. Acta Materialia ,2013,61(12):4354-4364. [81] Noh H J,Chen Z H,Yoon C S, et al. Cathode material with nanorod structure An application for advanced high-energy and safe lithium batteries[J]. Chemistry of Materials ,2013,25(10):2109-2115. [82] Rad M S,Danilov D L,Baghalha M, et al. Adaptive thermal modeling of Li-ion batteries[J]. Electrochimica Acta ,2013,102:183-195. [83] Murashko K,Pyrhonen J,Laurila L. Three-dimensional thermal model of a lithium ion battery for hybrid mobile working machines:Determination of the model parameters in a pouch cell[J]. IEEE Transactions on Energy Conversion ,2013,28(2):335-343. [84] Wang J J,Tang Y J,Yang J L, et al. Nature of LiFePO 4 aging process:Roles of impurity phases[J]. Journal of Power Sources ,2013,238:454-463. [85] Marcicki J,Canova M,Conlisk A T, et al. Design and parametrization analysis of a reduced-order electrochemical model of graphite/LiFePO 4 cells for SOC/SOH estimation[J]. Journal of Power Sources ,2013,237:310-324. [86] Lu D S,Xu M Q,Zhou L, et al. Failure mechanism of graphite/LiNi 0.5 Mn 1.5 O 4 cells at high voltage and elevated temperature[J]. Journal of The Electrochemical Society ,2013,160(5):A3138-A3143. [87] Kim Y S,Cho Y G,Odkhuu D, et al. A physical organogel electrolyte:Characterized by in situ thermo-irreversible gelation and single-ion-predominent conduction[R]//Scientific Reports,2013,3. [88] Gardarsson J S,Blanchard D,Sveinbjornsson D, et al. Li-ion conduction in the LiBH 4 :Lil system from density functional theory calculations and quasi-elastic neutron scattering[J]. Journal of Physical Chemistry C ,2013,117(18):9084-9091. [89] Jorn R,Kumar R,Abraham D P, et al. Atomistic modeling of the electrode-electrolyte interface in Li-ion energy storage systems:Electrolyte structuring[J]. Journal of Physical Chemistry C ,2013,117(8):3747-3761. [90] Kulish V V,Ng M F,Malyi O I, et al. Improved binding and stability in Si/CNT hybrid nanostructures via interfacial functionalization:A first-principles study[J]. Rsc . Advances ,2013,3(22):8446-8453. [91] Morris A J,Needs R J,Salager E, et al. Lithiation of silicon via lithium Zintl-defect complexes from first principles[J]. Physical Review B ,2013,87(17). [92] Plett G L. Algebraic solution for modeling sei layer growth[J]. Ecs Electrochemistry Letters ,2013,2(7):A63-A65. [93] Shi S Q,Qi Y,Li H, et al. Defect thermodynamics and diffusion mechanisms in Li 2 CO 3 and implications for the solid electrolyte interphase in Li-ion batteries[J]. Journal of Physical Chemistry C ,2013,117(17):8579-8593. [94] Zhang Y,Zhao Y S,Chen C F. Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites[J]. Physical Review B ,2013,87(13). [95] Hautier G,Jain A,Mueller T, et al. Designing multielectron lithium-ion phosphate cathodes by mixing transition metals[J]. Chemistry of Materials ,2013,25(10):2064-2074. [96] Lee S,Park J,Sastry A M, et al. Molecular dynamics simulations of SOC-dependent elasticity of Li x Mn 2 O 4 spinels in Li-ion batteries[J]. Journal of The Electrochemical Society ,2013, 160(6):A968-A972. [97] Cubuk E D,Wang W L,Zhao K J, et al. Morphological evolution of Si nanowires upon lithiation:A first-principles multiscale model[J]. Nano Letters ,2013,13(5):2011-2015. [98] Borkiewicz O J,Chapman K W,Chupas P J. Mapping spatially inhomogeneous electrochemical reactions in battery electrodes using high energy X-rays[J]. Physical Chemistry Chemical Physics ,2013,15(22):8466-8469. [99] Chou C Y,Hwang G S. Role of interface in the lithiation of silicon-graphene composites:A first principles study[J]. Journal of Physical Chemistry C ,2013,117(19):9598-9604. [100] Tanaka Y,Ohno T. Two dimensional Li diffusion in ion-conductive lithium lanthanum titanates[J]. Ecs Electrochemistry Letters ,2013,2(7):A53-A55. |
[1] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[3] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[4] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[5] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[8] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[9] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[10] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[11] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[12] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
[13] | Liang FANG, Kai ZHANG, Limin ZHOU. Recent advances and prospects of electrolyte for aluminum ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1236-1245. |
[14] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[15] | Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes [J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||