Energy Storage Science and Technology ›› 2013, Vol. 2 ›› Issue (4): 349-361.doi: 10.3969/j.issn.2095-4239.2013.04.003
• Research highlight • Previous Articles Next Articles
LIN Mingxiang, TANG Daichun, DONG Jinping, SUN Yang, XU Kaiqi, YAN Yong, CHEN Bin, WANG Hao, BEN Liubin, HUANG Xuejie
Received:
2013-06-15
Online:
2013-08-19
Published:
2013-08-19
CLC Number:
LIN Mingxiang, TANG Daichun, DONG Jinping, SUN Yang, XU Kaiqi, YAN Yong, CHEN Bin, WANG Hao, BEN Liubin, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Apr. 1,2013 to May 31,2013)[J]. Energy Storage Science and Technology, 2013, 2(4): 349-361.
[1] Liu Q,Du K,Guo H W, et al . Structural and electrochemical properties of Co-Mn-Mg multi-doped nickel based cathode materials LiNi 0.9 Co 0.1- x [Mn 1/2 Mg 1/2 ] x O 2 for secondary lithium ion batteries[J]. Electrochimica Acta ,2013,90:350-357. [2] Takami Y,Yanase S,Oi T. Observation of lithium isotope effects accompanying electrochemical release from lithium cobalt oxide[J] . Zeitschrift Fur Naturforschung Section A : A Journal of Physical Sciences ,2013,68(1-2):73-78. [3] Weng Y Q,Xu S M,Huang G Y, et al . Synthesis and performance of Li(Ni 1/3 Co 1/3 Mn 1/3 ) (1- x ) Mg x O 2 prepared from spent lithium ion batteries[J] . Journal of Hazardous Materials ,2013,246:163-172. [4] Krueger S,Kloepsch R,Li J, et al . How do reactions at the anode/electrolyte interface determine the cathode performance in lithium-ion batteries[J]. Journal of the Electrochemical Society ,2013,160(4):A542-A548. [5] Quinlan R A,Lu Y C,Shao H Y, et al . XPS studies of surface chemistry changes of LiNi 0.5 Mn 0.5 O 2 electrodes during high-voltage cycling[J] . Journal of the Electrochemical Society ,2013,160(4):A669-A677. [6] Cho Y H,Jang D,Yoon J, et al . Thermal stability of charged LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode for Li-ion batteries investigated by synchrotron based in situ X-ray diffraction[J] . Journal of Alloys and Compounds ,2013,562:219-223. [7] Kim Y. Encapsulation of LiNi 0.5 Co 0.2 Mn 0.3 O 2 with a thin inorganic electrolyte film to reduce gas evolution in the application of lithium ion batteries[J] . Physical Chemistry Chemical Physics ,2013, 15(17):6400-6405. [8] Lanz P,Sommer H,Schulz-Dobrick M, et al . Oxygen release from high-energy x Li 2 MnO 3 ·(1- x )LiMO 2 (M=Mn,Ni,Co):Electrochemical,differential electrochemical mass spectrometric,in situ pressure,and in situ temperature characterization[J] . Electrochimica Acta ,2013,93:114-119. [9] Sathiya M,Ramesha K,Rousse G, et al . High performance Li 2 Ru 1- y Mn y O 3 (0.2≤ y ≤0.8)cathode materials for rechargeable lithium-ion batteries:Their understanding[J] . Chemistry of Materials ,2013,25(7):1121-1131. [10] Bettge M,Li Y,Sankaran B, et al . Improving high-capacity Li 1.2 Ni 0.15 Mn 0.55 Co 0.1 O 2 -based lithium-ion cells by modifiying the positive electrode with alumina[J] . Journal of Power Sources ,2013,233:346-357. [11] Croy J R,Gallagher K G,Balasubramanian M, et al . Examining hysteresis in composite x Li 2 MnO 3 ∙(1- x )LiMO 2 cathode structures[J] . Journal of Physical Chemistry C ,2013,117(13):6525-6536. [12] Martha S K,Nanda J,Kim Y, et al . Solid electrolyte coated high voltage layered-layered lithium-rich composite cathode:Li 1.2 Mn 0.525 Ni 0.175 Co 0.1 O 2 [J] . Journal of Materials Chemistry A ,2013,1(18):5587-5595. [13] McCalla E,Lowartz C M,Brown C R, et al . Formation of layered-layered composites in the Li-Co-Mn oxide pseudoternary system during slow cooling[J] . Chemistry of Materials ,2013,25(6):912-918. [14] McCalla E,Rowe A W,Shunmugasundaram R, et al . Structural study of the Li-Mn-Ni oxide pseudoternary system of interest for positive electrodes of Li-ion batteries[J] . Chemistry of Materials ,2013, 25(6):989-999. [15] Xiang X D,Fu Z,Li W S. Morphology-controllable synthesis of LiMn 2 O 4 particles as cathode materials of lithium batteries[J] . Journal of Solid State Electrochemistry ,2013,17(4):1201-1206. [16] Park J S,Roh K C,Lee J W, et al . Structurally stabilized LiNi 0.5 Mn 1.5 O 4 with enhanced electrochemical properties through nitric acid treatment[J] . Journal of Power Sources ,2013,230:138-142. [17] Qian Y X,Deng Y F,Shi Z C, et al . Sub-micrometer-sized LiMn 1.5 Ni 0.5 O 4 spheres as high rate cathode materials for long-life lithium ion batteries[J] . Electrochemistry Communications ,2013,27:92-95. [18] Baggetto L,Dudney N J,Veith G M. Surface chemistry of metal oxide coated lithium manganese nickel oxide thin film cathodes studied by XPS[J] . Electrochimica Acta ,2013,90:135-147. [19] Kim J H,Pieczonka N P W, Li Z C, et al . Understanding the capacity fading mechanism in LiNi 0.5 Mn 1.5 O 4 /graphite Li-ion batteries[J] . Electrochimica Acta ,2013,90:556-562. [20] Sharma N,Yu D H,Zhu Y S, et al . Non-equilibrium structural evolution of the lithium-rich Li 1+ y Mn 2 O 4 cathode within a battery[J] . Chemistry of Materials ,2013,25(5):754-760. [21] Proll J,Weidler P G,Kohler R, et al . Comparative studies of laser annealing technique and furnace annealing by X-ray diffraction and Raman analysis of lithium manganese oxide thin films for lithium-ion batteries[J] . Thin Solid Films ,2013,531:160-171. [22] Harrison K L,Bridges C A,Paranthaman M P, et al . Temperature dependence of aliovalent-vanadium doping in LiFePO 4 cathodes[J] . Chemistry of Materials ,2013,25(5):768-781. [23] Chueh W C,Gabaly F E,Sugar J D, et al . Intercalation pathway in many-particle LiFePO 4 electrode revealed by nanoscale state-of-charge mapping[J] . Nano Letters ,2013,13(3):866-872. [24] Orikasa Y,Maeda T,Koyama Y, et al . Transient phase change in two phase reaction between LiFePO 4 and FePO 4 under battery operation[J] . Chemistry of Materials ,2013,25(7):1032-1039. [25] Bai P,Tian G Y. Statistical kinetics of phase-transforming nanoparticles in LiFePO 4 porous electrodes[J] . Electrochimica Acta ,2013,89:644-651. [26] Ge M Y,Rong J P,Fang X, et al . Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes[J] . Nano Research ,2013,6(3):174-181. [27] Abel P R,Chockla A M,Lin Y M, et al . Nanostructured Si (1- x ) Ge x for tunable thin film lithium-ion battery anodes[J] . Acs Nano ,2013, 7(3):2249-2257. [28] Liu X H, Fan F F,Yang H, et al . Self-limiting lithiation in silicon nanowires[J] . Acs Nano ,2013,7(2):1495-1503. [29] Philippe B,Dedryvere R,Gorgoi M, et al . Role of the LiPF 6 salt for the long-term stability of silicon electrodes in li-ion batteries A photoelectron spectroscopy study[J]. Chemistry of Materials ,2013,25(3):394-404. [30] Ulldemolins M,Cras F L,Pecquenard B. Memory effect highlighting in silicon anodes for high energy density lithium-ion batteries[J]. Electrochemistry Communications ,2013,27:22-25. [31] Jerliu B,Dorrer L,Huger E, et al . Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries[J]. Physical Chemistry Chemical Physics ,2013,15(20):7777-7784. [32] Levitas V I,Attariani H. Anisotropic compositional expansion and chemical potential for amorphous lithiated silicon under stress tensor[J]. Scientific Reports ,2013,3:1615. [33] Radvanyi E,Vito E D,Porcher W, et al . Study of lithiation mechanisms in silicon electrodes by Auger Electron Spectroscopy[J]. Journal of Materials Chemistry A ,2013,1(16):4956-4965. [34] Veith G M,Baggetto L,Adamczyk L A, et al . Electrochemical and solid-state lithiation of graphitic C 3 N 4 [J]. Chemistry of Materials ,2013,25(3):503-508. [35] He H,Huang C,Luo C W, et al . Dynamic study of Li intercalation into graphite by in situ high energy synchrotron XRD[J]. Electrochimica Acta ,2013,92:148-152. [36] Tsubouchi S,Domi Y,Doi T, et al . Spectroscopic analysis of surface layers in close contact with edge plane graphite negative- electrodes[J]. Journal of the Electrochemical Society ,2013,160(4):A575-A580. [37] Hwang J,Woo S H,Shim J, et al . One-pot synthesis of tin-embedded carbon/silica nanocomposites for anode materials in lithium-ion batteries[J]. Acs Nano ,2013,7(2):1036-1044. [38] Gourdin G.,Smith P H,Jiang T, et al . Lithiation of amorphous carbon negative electrode for Li-ion capacitor[J]. Journal of Electroanalytical Chemistry ,2013,688:103-112. [39] Yang Z C,Zhang Y,Kong J H, et al . Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of alpha-cyclodextrin templated by F127 block copolymers[J]. Chemistry of Materials ,2013,25(5):704-710. [40] Guo Q,Qin X. High capacity of SnO 2 nanoparticles decorated graphene as an anode for lithium-ion batteries[J]. Ecs Solid State Letters ,2013,2(6):M41-M43. [41] Sun C F,Karki K,Jia Z, et al . A beaded-string silicon anode[J]. Acs Nano ,2013,7(3):2717-2724. [42] Zhou X S,Wan L J,Guo Y G. Binding SnO 2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries[J]. Advanced Materials ,2013,25(15):2152-2157. [43] Tojo T,Fujisawa K,Muramatsu H, et al . Controlled interlayer spacing of scrolled reduced graphene nanotubes by thermal annealing[J]. Rsc Advances ,2013,3(13):4161-4166. [44] Li X F,Zhong Y,Cai M, et al . Tin-alloy heterostructures encapsulated in amorphous carbon nanotubes as hybrid anodes in rechargeable lithium ion batteries[J]. Electrochimica Acta ,2013,89:387-393. [45] Nacimiento F J,Lavela P,Tirado J L, et al . Sn-119 mossbauer spectroscopy analysis of Sn-Co-C composites prepared from a fuel oil pyrolysis precursor as anodes for Li-ion batteries[J]. Materials Chemistry and Physics ,2013,138(2-3):747-754. [46] Kravchyk K,Protesescu L,Bodnarchuk M I, et al . Monodisperse and inorganically capped Sn and Sn/SnO 2 nanocrystals for high-performance Li-ion battery anodes[J]. Journal of the American Chemical Society ,2013,135(11):4199-4202. [47] Tan C H,Qi G W,Li Y P, et al . The improved performance of porous Sn-Ni alloy as anode materials for lithium-ion battery prepared by electrochemical dissolution treatment[J]. International Journal of Electrochemical Science ,2013,8(2):1966-1975. [48] Kyeremateng N A,Dumur F,Knauth P, et al . Electrodeposited copolymer electrolyte into nanostructured titania electrodes for 3D Li-ion microbatteries[J]. Comptes. Rendus. Chimie. ,2013,16(1):80-88. [49] Lu J,Peng Q,Wang Z Y, et al . Hematite nanodiscs exposing (001) facets:Synthesis,formation mechanism and application for Li-ion batteries[J]. Journal of Materials Chemistry A ,2013,1(17):5232-5237. [50] Reddy M A,Breitung B,Chakravadhanula V S K, et al . CF x derived carbon FeF 2 nanocomposites for reversible lithium storage[J]. Advanced Energy Materials ,2013,3(3):308-313. [51] Wiaderek K M,Borkiewicz O J,Castillo-Martinez E, et al . Comprehensive insights into the structural and chemical changes in mixed-anion FeOF electrodes by using operando PDF and NMR spectroscopy[J]. Journal of the American Chemical Society ,2013,135(10):4070-4078. [52] Li C L,Yin CL,Mu X K, et al . Top-down synthesis of open framework fluoride for lithium and sodium batteries[J]. Chemistry of Materials ,2013,25(6):962-969. [53] Schaefer J L,Yanga D A,Archer L A. High lithium transference number electrolytes via creation of 3-dimensional,charged,nanoporous networks from dense functionalized nanoparticle composites[J]. Chemistry of Materials ,2013,25(6):834-839. [54] Bouchet R,Maria S,Meziane R, et al . Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries[J]. Nature Materials ,2013,12(5):452-457. [55] Feng S W,Shi DY,Liu F, et al . Single lithium-ion conducting polymer electrolytes based on poly(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide anions[J]. Electrochimica Acta ,2013,93:254-263. [56] Kim S H,Choi KH,Cho S J, et al . Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries[J]. Journal of Materials Chemistry A ,2013,1(16):4949-4955. [57] Kil E H,Choi K H,Ha H J, et al . Imprintable,bendable,and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries[J]. Advanced Materials ,2013,25(10):1395-1400. [58] Zhou D,Fan L Z,Fan H H, et al . Electrochemical performance of trimethylolpropane trimethylacrylate-based gel polymer electrolyte prepared by in situ thermal polymerization[J]. Electrochimica Acta ,2013,89:334-338. [59] Epp V,Gun O,Deiseroth H J, et al . Long-range Li + dynamics in the lithium argyrodite Li 7 PSe 6 as probed by rotating-frame spin-lattice relaxation NMR[J]. Physical Chemistry Chemical Physics ,2013,15(19):7123-7132. [60] Epp V,Nakhal S,Lerch M, et al . Two-dimensional diffusion in Li 0.7 NbS 2 as directly probed by frequency-dependent Li-7 NMR[J]. Journal of Physics-Condensed Matter ,2013,25(19). [61] Chen H P,Tao H Z,Wu Q D, et al . Crystallization kinetics of superionic conductive Al(B,La)- incorporated LiTi 2 (PO 4 ) 3 glass-ceramics[J]. Journal of the American Ceramic Society ,2013,96(3):801-805. [62] Demeaux J,Lemordant D,Caillon-Caravanier M, et al . New insights into a high potential spinel and alkylcarbonate-based electrolytes[J]. Electrochimica Acta ,2013,89:163-172. [63] Basile A,Hollenkamp A F,Bhatt A I, et al . Extensive charge-discharge cycling of lithium metal electrodes achieved using ionic liquid electrolytes[J]. Electrochemistry Communications ,2013,27:69-72. [64] Chen Z H,Ren Y,Jansen A N, et al . New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries[J]. Nature Communications ,2013,4:1513(article number). [65] Kang Y S,Yoon T,Lee S S, et al . 1,3,5-Trihydroxybenzene as a film-forming additive for high-voltage positive electrode[J]. Electrochemistry Communications ,2013,27:26-28. [66] Domi Y,Doi T,Yamanaka T, et al . Electrochemical AFM study of surface films formed on the HOPG edge plane in propylene carbonate-based electrolytes[J]. Journal of the Electrochemical Society ,2013,160(4):A678-A683. [67] Schmitz R,Muller R A,Schmitz R W, et al . SEI investigations on copper electrodes after lithium plating with Raman spectroscopy and mass spectrometry[J]. Journal of Power Sources ,2013,233:110-114. [68] Lim H D,Park K Y,Song H, et al . Enhanced power and rechargeability of a LiO 2 battery based on a hierarchical-fibril CNT electrode[J]. Advanced Materials ,2013,25(9):1348-1352. [69] Horstmann B,Danner T,Bessler W G. Precipitation in aqueous lithium-oxygen batteries:A model-based analysis[J]. Energy & Environmental Science ,2013,6(4):1299-1314. [70] Barile C J,Gewirth A A. Investigating the LiO 2 battery in an ether-based electrolyte using differential electrochemical mass spectrometry[J]. Journal of the Electrochemical Society ,2013, 160(4):A549-A552. [71] Park J W,Yamauchi K,Takashima E, et al . Solvent effect of room temperature ionic liquids on electrochemical reactions in lithium-sulfur batteries[J]. Journal of Physical Chemistry C ,2013,117(9):4431-4440. [72] Weng W,Pol V G,Amine K. Ultrasound assisted design of sulfur/carbon cathodes with partially fluorinated ether electrolytes for highly efficient Li/S batteries[J]. Advanced Materials ,2013, 25(11):1608-1615. [73] She Z W,Li W Y,Cha J J, et al . Sulphur-TiO 2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications ,2013,4:1331(article number). [74] Jeong S,Bresser D,Buchholz D, et al . Carbon coated lithium sulfide particles for lithium battery cathodes[J]. Journal of Power Sources ,2013,235:220-225. [75] Suo L M,Hu Y S,Li H, et al . A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications ,2013,4:1481(article number). [76] Bak S M,Nam K W,Chang W, et al . Correlating structural changes and gas evolution during the thermal decomposition of charged Li x Ni 0.8 Co 0.15 Al 0.05 O 2 cathode materials[J]. Chemistry of Materials ,2013,25(3):337-351. [77] Wang X J,Hou Y Y,Zhu Y S, et al . An aqueous rechargeable lithium battery using coated Li metal as anode[J]. Scientific Reports ,2013,3:1401(article number). [78] Zhu J,Lu L,Zeng K Y. Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by advanced scanning probe microscopy techniques[J]. Acs Nano ,2013,7(2):1666-1675. [79] Ding F,Xu W,Graff G L, et al . Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society ,2013,135(11):4450-4456. [80] Andre D,Nuhic A,Soczka-Guth T, et al . Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electric vehicles[J]. Engineering Applications of Artificial Intelligence ,2013,26(3):951-961. [81] Bae C J,Erdonmez C K,Halloran J W, et al . Design of battery electrodes with dual-scale porosity to minimize tortuosity and maximize performance[J]. Advanced Materials ,2013,25(9):1254-1258. [82] Klein R,Chaturvedi N A,Christensen J, et al . Electrochemical model based observer design for a lithium-ion battery[J]. Ieee Transactions on Control Systems Technology ,2013,21(2):289-301. [83] Lin C K,Ren Y,Amine K, et al . In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithium-ion battery[J]. Journal of Power Sources ,2013,230:32-37. [84] Vortmann B,Nowak S,Engelhard C. Rapid characterization of lithium ion battery electrolytes and thermal aging products by low-temperature plasma ambient ionization high-resolution mass spectrometry[J]. Analytical Chemistry ,2013,85(6):3433-3438. [85] Downie L E,Krause L J,Burns J C, et al . In situ detection of lithium plating on graphite electrodes by electrochemical calorimetry[J]. Journal of the Electrochemical Society ,2013,160(4):A588-A594. [86] Ji Y,Zhang Y C,Wang C Y. Li-ion cell operation at low temperatures[J]. Journal of the Electrochemical Society ,2013, 160(4):A636-A649. [87] Kassem M,Delacourt C. Postmortem analysis of calendar-aged graphite/LiFePO 4 cells[J]. Journal of Power Sources ,2013,235:159-171. [88] Wang B,Richardson T J,Chen G Y. Stable and high-rate overchange protection for rechargeable lithium batteries[J]. Physical Chemistry Chemical Physics ,2013,15(18):6849-6855. [89] Wu S H,Huang A. Effects of tris(pentafluorophenyl)borane (TPFPB)as an electrolyte additive on the cycling performance of LiFePO 4 batteries[J]. Journal of the Electrochemical Society ,2013,160(4):A684-A689. [90] Xu S,Zhang Y H,Cho J, et al . Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems[J]. Nature Communications ,2013,4:1543(article number). [91] Cho KY,Kwon Y I,Youn J R, et al . Interaction analysis between binder and particles in multiphase slurries[J]. Analyst ,2013,138(7):2044-2050. [92] Kulish V V,Malyi O I,Ng M F, et al . Enhanced Li adsorption and diffusion in silicon nanosheets based on first principles calculations[J]. Rsc Advances ,2013,3(13):4231-4236. [93] Bhattacharya J,Wolverton C. Relative stability of normal vs. inverse spinel for 3d transition metal oxides as lithium intercalation cathodes[J]. Physical Chemistry Chemical Physics ,2013,15(17):6486-6498. [94] Jalem R,Yamamoto Y,Shiiba H, et al . Concerted migration mechanism in the Li-ion dynamics of garnet-type Li 7 La 3 Zr 2 O 12 [J]. Chemistry of Materials ,2013,25(3):425-430. [95] Fisher C A J,Kuganathan N,Islam M S. Defect chemistry and lithium-ion migration in polymorphs of the cathode material Li 2 MnSiO 4 [J]. Journal of Materials Chemistry A ,2013,1(13):4207-4214. [96] Garcia-Lastra J M,Myrdal J S G,Christensen R, et al . DFT plus U study of polaronic conduction in Li 2 O 2 and Li 2 CO 3 :Implications for Li-air batteries[J]. Journal of Physical Chemistry C ,2013,117(11):5568-5577. [97] Borodin O,Zhuang G R V,Ross P N, et al . Molecular dynamics simulations and experimental study of lithium-ion transport in dilithium ethylene dicarbonate[J]. Journal of Physical Chemistry C ,2013,117(15):7433-7444. [98] Chou C Y,Hwang G S. Surface effects on the structure and lithium behavior in lithiated silicon:A first principles study[J]. Surface Science ,2013,612:16-23. [99] Hao F,Fang D N. Diffusion-induced stresses of spherical core-shell electrodes in lithium-ion batteries:The effects of the shell and surface/interface stress[J]. Journal of the Electrochemical Society ,2013,160(4):A595-A600. [100] Lee S G,Jeon DH,Kim B M, et al . Lattice Boltzmann simulation for electrolyte transport in porous electrode of lithium ion batteries[J]. Journal of the Electrochemical Society ,2013,160(4):H258-H265. |
[1] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[3] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[4] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[5] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[8] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[9] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[10] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[11] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[12] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
[13] | Liang FANG, Kai ZHANG, Limin ZHOU. Recent advances and prospects of electrolyte for aluminum ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1236-1245. |
[14] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[15] | Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes [J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||