Energy Storage Science and Technology ›› 2013, Vol. 2 ›› Issue (6): 565-576.doi: 10.3969/j.issn.2095-4239.2013.06.002
• Research highlight • Previous Articles Next Articles
YAN Yong, XU Kaiqi, LIN Mingxiang, TANG Daichun, DONG Jinping, SUN Yang, CHEN Bin, WANG Hao, BEN Liubin, HUANG Xuejie
Received:
2013-10-21
Revised:
2013-10-22
Online:
2013-12-19
Published:
2013-12-19
CLC Number:
YAN Yong, XU Kaiqi, LIN Mingxiang, TANG Daichun, DONG Jinping, SUN Yang, CHEN Bin, WANG Hao, BEN Liubin, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Aug. 1,2013 to Sept. 30,2013)[J]. Energy Storage Science and Technology, 2013, 2(6): 565-576.
[1] Wang C C,Jarvis K A,Ferreira P J, et al . Effect of synthesis conditions on the first charge and reversible capacities of lithium-rich layered oxide cathodes[J]. Chemistry of Materials , 2013,25(15):3267-3275. [2] Zheng J M,Wu X B,Yang Y. Improved electrochemical performance of Li[Li 0.2 Mn 0.54 Ni 0.13 Co 0.13 ]O 2 cathode material by fluorine incorporation[J]. Electrochimica Acta ,2013,105:200-208. [3] Chen W C,Song Y F,Wang C C, et al . Study on the synthesis-microstructure-performance relationship of layered Li-excess nickel-manganese oxide as a Li-ion battery cathode prepared by high-temperature calcination[J]. Journal of Materials Chemistry A ,2013,1(36):10847-10856. [4] Mccalla E,Rowe A W,Camardese J, et al . The role of metal site vacancies in promoting Li-Mn-Ni-O layered solid solutions[J]. Chemistry of Materials ,2013,25(13):2716-2721. [5] Wang J,He X,Paillard E, et al . Improved rate capability of layered Li-rich cathode for lithium ion battery by electrochemical treatment[J]. ECS Electrochemistry Letters ,2013,2(8):A78-A80. [6] Yamashita Y,Barpanda P,Yamada Y, et al . Demonstration of Co 3 + /Co 2+ electrochemical activity in LiCoBO 3 cathode at 4.0 V[J]. ECS Electrochemistry Letters ,2013,2(8):A75-A77. [7] Jadhav H S,Cho M S, Kalubarme R S, et al . Influence of B 2 O 3 addition on the ionic conductivity of Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 glass ceramics[J]. Journal of Power Sources ,2013,241:502-508. [8] Zhang X H,Luo D,Li G S, et al . Self-adjusted oxygen- partial-pressure approach to the improved electrochemical performance of electrode Li[Li 0.14 Mn 0.47 Ni 0.25 Co 0.14 ]O 2 for lithium- ion batteries [J]. Journal of Materials Chemistry A ,2013,1(34): 9721-9729. [9] Boulineau A,Simonin L,Colin J F, et al . First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries[J]. Nano Letters , 2013,13(8):3857-3863. [10] Lee E S,Huq A,Manthiram A. Understanding the effect of synthesis temperature on the structural and electrochemical characteristics of layered-spinel composite cathodes for lithium-ion batteries[J]. Journal of Power Sources ,2013,240:193-203. [11] Maugeri L,Iadecola A,Simonelli L, et al . Study of local disorder in LiMn(Cr,Ni)O 2 compounds by extended X-ray absorption fine structure measurements[J]. Journal of Power Sources ,2013, 242:202-207. [12] Sathiya M,Rousse G,Ramesha K, et al . Reversible anionic redox chemistry in high-capacity layered-oxide electrodes[J]. Nature Materials ,2013,12(9):827-835. [13] Mizokawa T,Wakisaka Y,Sudayama T, et al . Role of oxygen holes in Li x CoO 2 revealed by soft X-ray spectroscopy[J]. Physical Review Letters ,2013,111(5):056404. [14] Gallagher K G,Croy J R,Balasubramanian M, et al . Correlating hysteresis and voltage fade in lithium-and manganese-rich layered transition-metal oxide electrodes[J]. Electrochemistry Communications , 2013,33:96-98. [15] Menzel M, Schlifke A,Falk M, et al . Surface and in-depth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis[J]. Spectrochimica Acta Part B : Atomic Spectroscopy ,2013,85:62-70. [16] Lee E H,Park J H, Kim J M, et al . Direct surface modification of high-voltage LiCoO 2 cathodes by UV-cured nanothickness poly(ethylene glycol diacrylate) gel polymer electrolytes[J]. Electrochimica Acta ,2013,104:249-254. [17] Esaki S, Nishijima M,Yao T. Cycle performance improvement of LiMn 2 O 4 cathode for lithium ion battery by "nano inclusion" formation[J]. ECS Electrochemistry Letters ,2013,2(10): A93-A97. [18] Mukai K,Ikedo Y,Kamazawa K, et al . The gradient distribution of Ni ions in cation-disordered Li[Ni 1/2 Mn 3/2 ]O 4 clarified by muon-spin rotation and relaxation (mu SR)[J]. RSC Advances , 2013,3(29):11634-11639. [19] Moorhead R Z,Chemelewski K R,Goodenough J B, et al . Magnetic measurements as a viable tool to assess the relative degrees of cation ordering and Mn 3+ content in doped LiMn 1.5 Ni 0.5 O 4 spinel cathodes[J]. Journal of Materials Chemistry A ,2013,1(36):10745-10752. [20] Xiao J,Yu X, Zheng J, et al . Interplay between two-phase and solid solution reactions in high voltage spinel cathode material for lithium ion batteries[J]. Journal of Power Sources ,2013, 242:736-741. [21] Zhu W,Liu D,Trottier J, et al . In-situ X-ray diffraction study of the phase evolution in undoped and Cr-doped Li x Mn 1.5 Ni 0.5 O 4 (0.1≤ x ≤1.0) 5 V cathode materials[J]. Journal of Power Sources , 2013,242:236-243. [22] Kodama K,Igawa N,Shamoto S, et al . Local lattice distortion caused by short range charge ordering in LiMn 2 O 4 [J]. Journal of the Physical Society of Japan ,2013,82(9):094601. [23] Chemelewski K R,Lee E S,Li W, et al . Factors influencing the electrochemical properties of high-voltage spinel cathodes: Relative impact of morphology and cation ordering[J]. Chemistry of Materials ,2013,25(14):2890-2897. [24] Cheng F Q,Xin Y L,Huang Y Y, et al . Enhanced electrochemical performances of 5 V spinel LiMn 1.58 Ni 0.42 O 4 cathode materials by coating with LiAlO 2 [J]. Journal of Power Sources ,2013,239:181-188. [25] Jafta C J,Mathe M K,Manyala N, et al . Microwave-assisted synthesis of high-voltage nanostructured LiMn 1.5 Ni 0.5 O 4 Spinel: Tuning the Mn 3+ content and electrochemical performance[J]. ACS Applied Materials & Interfaces ,2013,5(15):7592-7598. [26] Brutti S,Greco G,Reale P, et al . Insights about the irreversible capacity of LiNi 0.5 Mn 1.5 O 4 cathode materials in lithium batteries[J]. Electrochimica Acta ,2013,106:483-493. [27] Li C L,Zhao Y Y,Zhang H M, et al . Compatibility between LiNi 0.5 Mn 1.5 O 4 and electrolyte based upon lithium bis (oxalate) borate and sulfolane for high voltage lithium-ion batteries[J]. Electrochimica Acta ,2013,104:134-139. [28] Arai H,Sato K,Orikasa Y, et al . Phase transition kinetics of LiNi0.5Mn1.5O4 electrodes studied by in situ X-ray absorption near-edge structure and X-ray diffraction analysis[J]. Journal of Materials Chemistry A ,2013,1(35):10442-10449. [29] Pieczonka N P W,Liu Z Y,Lu P, et al . Understanding transition-metal dissolution behavior in LiNi 0.5 Mn 1.5 O 4 high-voltage spinel for lithium ion batteries[J]. Journal of Physical Chemistry C ,2013,117(31):15947-15957. [30] Omenya F,Chernova N A,Wang Q, et al . The structural and electrochemical impact of Li and Fe site substitution in LiFePO 4 [J]. Chemistry of Materials ,2013,25(13):2691-2699. [31] Sobkowiak A,Roberts M R,Younesi R, et al . Understanding and controlling the surface chemistry of LiFeSO 4 for an enhanced cathode functionality[J]. Chemistry of Materials ,2013,25(15):3020-3029. [32] Bridges C A,Harrison K L,Unocic R R, et al . Defect chemistry of phospho-olivine nanoparticles synthesized by a microwave- assisted solvothermal process[J]. Journal of Solid State Chemistry , 2013,205:197-204. [33] Chae I S,Koyano M,Sukegawa T, et al . Redox equilibrium of a zwitterionic radical polymer in a non-aqueous electrolyte as a novel Li + host material in a Li-ion battery[J]. Journal of Materials Chemistry A ,2013,1(34):9608-9611. [34] Jeong S,Lee J P,Ko M, et al . Etched graphite with internally grown Si nanowires from pores as an anode for high density Li-ion batteries[J]. Nano Letters ,2013,13(7):3403-3407. [35] Erk C,Brezesinski T,Sommer H, et al . Toward silicon anodes for next-generation lithium ion batteries:A comparative performance study of various polymer binders and silicon nanopowders[J]. ACS Applied Materials & Interfaces ,2013, 5(15):7299-7307. [36] Lotfabad E M,Kalisvaart P,Cui K,et al. ALD TiO 2 coated silicon nanowires for lithium ion battery anodes with enhanced cycling stability and coulombic efficiency[J]. Physical Chemistry Chemical Physics ,2013,15(32):13646-13657. [37] Bhandavat R,Singh G. Stable and efficient Li-ion battery anodes prepared from polymer-derived silicon oxycarbide-carbon nanotube shell/core composites[J]. Journal of Physical Chemistry C ,2013, 117(23):11899-11905. [38] Wu H,Yu G H,Pan L J, et al . Stable Li-ion battery anodes by in - situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles [J]. Nature Communications ,2013,4: [39] Philippe B,Dedryvere R,Gorgoi M, et al . Improved performances of nanosilicon electrodes using the salt LiFSI:A photoelectron spectroscopy study[J]. Journal of the American Chemical Society , 2013,135(26):9829-9842. [40] Nie A M,Gan L Y,Chong Y C, et al . Atomic-scale observation of lithiation reaction front in nanoscale SnO 2 materials[J]. ACS Nano ,2013,7(7):6203-6211. [41] Delpuech N,Dupre N,Mazouzi D, et al . Correlation between irreversible capacity and electrolyte solvents degradation probed by NMR in Si-based negative electrode of Li-ion cell[J]. Electrochemistry Communications ,2013,33:72-75. [42] Zhou S,Yang X G, Xie J, et al . Titanium silicide nanonet as a new material platform for advanced lithium ion battery applications[J]. Chemical Communications ,2013,49(58):6470-6476. [43] Deng J W,Yan C L,Yang L C, et al . Sandwich-Stacked SnO 2 /Cu Hybrid Nanosheets as Multichannel Anodes for Lithium Ion Batteries[J]. ACS Nano ,2013,7(8):6948-6954. [44] Shin J,Ryu W H,Park K S, et al . Morphological evolution of carbon nanofibers encapsulating SnCo alloys and its effect on growth of the solid electrolyte interphase layer[J]. ACS Nano ,2013,7(8):7330-7341. [45] Ma J Y,Xiang D,Li Z Q, et al . TiO 2 nanocrystal embedded ordered mesoporous carbons as anode materials for lithium-ion batteries with highly reversible capacity and rate performance[J]. Cryst. Eng. Comm. ,2013,15(34):6800-6807. [46] Wang S C,Yang J,Zhou X Y, et al . Layer-by-layer assembled sandwich-like carbon nanotubes/graphene oxide composite as high- performance electrodes for lithium-ion batteries[J]. International Journal of Electrochemical Science ,2013,8(7):9692-9703. [47] Momma T,Jeong M,Yokoshima T, et al . Sn-O-C composite anode for Li secondary battery synthesized by an electrodeposition technique using organic carbonate electrolyte[J]. Journal of Power Sources ,2013,242:527-532. [48] Wang J J,Chen-wiegart Y C K,Wang J. In situ chemical mapping of a lithium-ion battery using full-field hard X-ray spectroscopic imaging[J]. Chemical Communications ,2013,49(58):6480-6482. [49] Fan Z J,Yan J,Ning G Q, et al . Porous graphene networks as high performance anode materials for lithium ion batteries[J]. Carbon , 2013,60:558-561. [50] Li B,Zhang Q Y,Zhang C L, et al . One-step nanocasting synthesis of mesostructured TiO 2 /graphitic carbon composite as an anode material for lithium-ion battery[J]. International Journal of Electrochemical Science ,2013,8(6):8414-8421. [51] Shi S,Xu C J,Yang C, et al . Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property[J]. Scientific Reports ,2013,3:2598. [52] Li J T,Su H,Huang L, et al . Investigation of interfacial processes in graphite thin film anodes of lithium-ion batteries by both in situ and ex situ infrared spectroscopy[J]. Science China : Chemistry ,2013,56(7):992-996. [53] Li J L,Yao R M,Bai J, et al . Two-dimensional mesoporous carbon nanosheets as a high-performance anode material for lithium-ion batteries[J]. Chempluschem ,2013,78(8):797-800. [54] Hori H,Shikano M,Kobayashi H, et al . Analysis of hard carbon for lithium-ion batteries by hard X-ray photoelectron spectroscopy[J]. Journal of Power Sources ,2013,242:844-847. [55] Lee B S,Seo J H,Son S B, et al . Face-centered-cubic lithium crystals formed in mesopores of carbon nanofiber electrodes[J]. ACS Nano ,2013,7(7):5801-5807. [56] Ai W,Xie L H,Du Z Z, et al . A novel graphene-polysulfide anode material for high-performance lithium-ion batteries[J]. Scientific Reports ,2013,3:2341. [57] Hubaud A A,Schroeder D J,Key B, et al . Low temperature stabilization of cubic (Li 7 -x Al x /3 ) La 3 Zr 2 O 12 :Role of aluminum during formation[J]. Journal of Materials Chemistry A ,2013, 1(31):8813-8818. [58] Kim S,Hirayama M,Taminato S, et al . Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte[J]. Dalton Transactions ,2013,42(36): 13112-13117. [59] Morimoto H,Awano H,Terashima J, et al . Preparation of lithium ion conducting solid electrolyte of NASICON-type Li 1+ x Al x Ti 2- x (PO 4 ) 3 ( x =0.3) obtained by using the mechanochemical method and its application as surface modification materials of LiCoO 2 cathode for lithium cell[J]. Journal of Power Sources ,2013,240:636-643. [60] Do C,Lunkenheimer P,Diddens D, et al . Li + transport in poly(ethylene oxide) based electrolytes:Neutron scattering, dielectric Spectroscopy,and molecular dynamics Simulations[J]. Physical Review Letters ,2013,111(1):18301. [61] Akita Y,Segawa M,Munakata H, et al . In-situ fourier transform infrared spectroscopic analysis on dynamic behavior of electrolyte solution on LiFePO 4 cathode[J]. Journal of Power Sources , 2013,239:175-180. [62] Browning K L,Baggetto L,Unocic R R, et al . Gas evolution from cathode materials:A pathway to solvent decomposition concomitant to SEI formation[J]. Journal of Power Sources , 2013,239:341-346. [63] Perez-villar S,Lanz P,Schneider H, et al . Characterization of a model solid electrolyte interphase/carbon interface by combined in situ Raman/Fourier transform infrared microscopy[J]. Electrochimica Acta ,2013,106:506-515. [64] Lim H K,Lim H D,Park K Y, et al . Toward a lithium-"air" battery:The effect of CO 2 on the chemistry of a lithium-oxygen cell[J]. Journal of the American Chemical Society ,2013, 135(26):9733-9742. [65] Wen R,Hong M,Byon H R. In situ AFM imaging of Li-O 2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte[J]. Journal of the American Chemical Society ,2013,135(29):10870-10876. [66] Gallant B M,Kwabi D G,Mitchell R R, et al . Influence of Li 2 O 2 morphology on oxygen reduction and evolution kinetics in Li-O 2 batteries[J]. Energy & Environmental Science ,2013,6(8): 2518-28. [67] Lu J,Lei Y,Lau K C, et al . A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries[J]. Nature Communications ,2013,4:2383. [68] Zheng J M,Gu M,Chen H H, et al . Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium-sulfur batteries[J]. Journal of Materials Chemistry A ,2013,1(29):8464-8470. [69] Walus S,Barchasz C,Colin J F, et al . New insight into the working mechanism of lithium-sulfur batteries:In situ and operando X-ray diffraction characterization[J]. Chemical Communications , 2013,49(72):7899-7901. [70] Lecuyer M,Gaubicher J,Deschamps M, et al . Structural changes of a Li/S rechargeable cell in lithium metal polymer technology[J]. Journal of Power Sources ,2013,241:249-254. [71] Borhani H S,Kieschnick M,Motemani Y, et al . High- throughput compositional and structural evaluation of a Li a (Ni x Mn y Co z ) O r thin film battery materials library[J]. ACS Combinatorial Science , 2013,15(8):401-409. [72] Maher K,Yazami R. Effect of overcharge on entropy and enthalpy of lithium-ion batteries[J]. Electrochimica Acta ,2013,101: 71-78. [73] Mukai K,Kishida Y,Nozaki H, et al . Structural phase transition from rhombohedral (R3m) to monoclinic (C2/m) symmetry in lithium overstoichiometric Li 1+ δ Co 1- δ O 2- δ [J]. Chemistry of Materials , 2013,25(14):2828-2837. [74] Herklotz M,Scheiba F,Hinterstein M, et al . Advances in in situ powder diffraction of battery materials:A case study of the new beamline PO2.1 at DESY,hamburg[J]. Journal of Applied Crystallography ,2013,46:1117-1127. [75] Gross T,Giebeler L,Hess C. Novel in situ cell for Raman diagnostics of lithium-ion batteries[J]. Review of Scientific Instruments ,2013,84(7):073109. [76] Bao W J,Zhuang Q C,Xu S D, et al . Investigation of electronic and ionic transport properties in α-MoO 3 cathode material by electrochemical impedance spectroscopy[J]. Ionics ,2013, 19(7):1005-1013. [77] Lenninger M,Froeis T,Scheiderbauer M, et al . High current density 3D electrodes manufactured by technical embroidery[J]. Journal of Solid State Electrochemistry ,2013,17(8):2303-2309. [78] Uemura T, Goto K,Ogawa M, et al . All-solid secondary batteries with sulfide-based thin film electrolytes[J]. Journal of Power Sources ,2013,240:510-514. [79] Xue X Y,Deng P,Yuan S, et al . CuO/PVDF nanocomposite anode for a piezo-driven self-charging lithium battery[J]. Energy & Environmental Science ,2013,6(9):2615-2620. [80] Fridman K,Sharabi R,Elazari R, et al . A new advanced lithium ion battery:Combination of high performance amorphous columnar silicon thin film anode,5 V LiNi 0.5 Mn 1.5 O 4 spinel cathode and fluoroethylene carbonate-based electrolyte solution[J]. Electrochemistry Communications ,2013,33:31-34. [81] Waag W,Fleischer C,Sauer D U. Adaptive on-line prediction of the available power of lithium-ion batteries[J]. Journal of Power Sources ,2013,242:548-559. [82] Wetz D A,Shrestha B,Novak P M. Pulsed evaluation of high power electrochemical energy storage devices[J]. IEEE Transactions on Dielectrics and Electrical Insulation ,2013,20(4):1040-1048. [83] Fridman K,Sharabi R,Markevich E, et al . An advanced lithium ion battery based on amorphous silicon film anode and integrated x Li 2 MnO 3 ·(1- x )LiNi y Mn z Co 1- y - z O 2 cathode[J]. ECS Electrochemistry Letters ,2013,2(8):A84-A87. [84] Ansean D,Gonzalez M,Viera J C, et al . Fast charging technique for high power lithium iron phosphate batteries:A cycle life analysis[J]. Journal of Power Sources ,2013,239:9-15. [85] Kabitz S,Gerschler J B,Ecker M, et al . Cycle and calendar life study of a graphite vertical bar LiNi 1/3 Mn 1/3 Co 1/3 O 2 Li-ion high energy system. Part A:Full cell characterization[J]. Journal of Power Sources ,2013,239:572-583. [86] Schwunk S,Armbruster N,Straub S, et al . Particle filter for state of charge and state of health estimation for lithium-iron phosphate batteries[J]. Journal of Power Sources ,2013,239:705-710. [87] Tompsett D A,Islam M S. Electrochemistry of hollandite alpha- MnO 2 :Li-ion and Na-ion insertion and Li 2 O incorporation[J]. Chemistry of Materials ,2013,25(12): 2515-2526. [88] Han S,Park J,Lu W, et al . Numerical study of grain boundary effect on Li + effective diffusivity and intercalation-induced stresses in Li-ion battery active materials[J]. Journal of Power Sources , 2013,240:155-167. [89] Ling C,Mizuno F. Phase stability of post-spinel compound AMn 2 O 4 (A=Li,Na,or Mg) and its application as a rechargeable battery cathode[J]. Chemistry of Materials ,2013,25(15):3062-3071. [90] Gong X,Huang J M,Chen Y, et al . Vibrational contribution to the thermodynamic properties of lithium ion batteries system: A first principles calculations[J]. International Journal of Electrochemical Science ,2013,8(8):10549-10556. [91] Dapp W B,Muser M H. Redox reactions with empirical potentials:Atomistic battery discharge simulations[J]. Journal of Chemical Physics ,2013,139(6):4106. [92] Chang K K,HallstedT B,Music D, et al . Thermodynamic description of the layered O 3 and O 2 structural LiCoO 2 -CoO 2 pseudo-binary systems[J]. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry ,2013,41:6-15. [93] Kishida I,Orita K,Nakamura A, et al . Thermodynamic analysis using first-principles calculations of phases and structures of Li x Ni 0.5 Mn 1.5 O 4 (0≤ x ≤1)[J]. Journal of Power Sources ,2013, 241:1-5. [94] Lee E,Persson K A. Solid-solution Li intercalation as a function of cation order/disorder in the high-voltage Li x Ni 0.5 Mn 1.5 O 4 spinel[J]. Chemistry of Materials ,2013,25(14):2885-2889. [95] Dianat A,Seriani N,Bobeth M, et al . Effects of Al-doping on the properties of Li-Mn-Ni-O cathode materials for Li-ion batteries:An ab initio study[J]. Journal of Materials Chemistry A ,2013, 1(32):9273-9280. [96] Fan X F,Zheng W T,Kuo J L, et al . Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries[J]. ACS Applied Materials & Interfaces , 2013,5(16):7793-7797. [97] Gu M,Wang Z G,Connell J G, et al . Electronic origin for the phase transition from amorphous Li x Si to crystalline Li 15 Si 4 [J]. ACS Nano ,2013,7(7):6303-6309. [98] Kang S Y,Mo Y F,Ong S P, et al . A facile mechanism for recharging Li 2 O 2 in Li-O 2 batteries[J]. Chemistry of Materials , 2013,25(16):3328-3336. [99] Chamas M,Sougrati M T,Reibel C, et al . Quantitative analysis of the initial restructuring step of nanostructured FeSn 2 -based anodes for Li-ion batteries[J]. Chemistry of Materials ,2013, 25(12):2410-2420. [100] Ushirogata K,Sodeyama K,Okuno Y, et al . Additive effect on reductive decomposition and binding of carbonate-based solvent toward solid electrolyte interphase formation in lithium-ion battery[J]. Journal of the American Chemical Society ,2013,135(32): 11967-11974. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[7] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[8] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[9] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[12] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[13] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[14] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[15] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||