Energy Storage Science and Technology ›› 2014, Vol. 3 ›› Issue (3): 216-226.doi: 10.3969/j.issn.2095-4239.2014.03.006
• Research highlight • Previous Articles Next Articles
LIN Mingxiang, CHEN Bin, WANG Hao, YAN Yong, XU Kaiqi, TANG Daichun, DONG Jinping, SUN Yang, LIU Yanyan, BEN Liubin, HUANG Xuejie
Received:
2014-04-18
Online:
2014-05-01
Published:
2014-05-01
CLC Number:
LIN Mingxiang, CHEN Bin, WANG Hao, YAN Yong, XU Kaiqi, TANG Daichun, DONG Jinping, SUN Yang, LIU Yanyan, BEN Liubin, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Feb. 1,2014 to March 31,2014)[J]. Energy Storage Science and Technology, 2014, 3(3): 216-226.
[1] Bai Y,Chang Q J,Yu Q, et al . A novel approach to improve the electrochemical performances of layered LiNi 1/3 CO 1/3 Mn 1/3 O 2 cathode by YPO 4 surface coating[J]. Electrochimica Acta ,2013,112:414-421. [2] Hwang S,Chang W,Kim S M, et al . Investigation of changes in the surface structure of Li x Ni 0.8 Co 0.15 Al 0.05 O 2 cathode materials induced by the initial charge[J]. Chemistry of Materials ,2014,26(2): 1084-1092. [3] Jung S K,Gwon H,Hong J, et al . Understanding the degradation mechanisms of LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode material in lithium ion batteries[J]. Advanced Energy Materials ,2014,4(1). doi:10.1002/aenm.201300787. [4] Lee S,Ha J,Cheng H Y, et al . Surface-coverage-dependent cycle stability of core-shell nanostructured electrodes for use in lithium ion batteries[J]. Advanced Energy Materials ,2014,4(1). doi:10.1002/aenm.201300472. [5] Li X F,Liu J,Banis M N, et al . Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application[J]. Energy & Environmental Science ,2014,7(2):768-778. [6] Okada K,Machida N,Naito M, et al . Preparation and electrochemical properties of LiAlO 2 coated Li(Ni 1/3 Mn 1/3 Co 1/3 )O 2 for all-solid-state batteries[J]. Solid State Ionics ,2014,255:120-127. [7] Loeffler N,Von Zamory J,Laszczynski N, et al . Performance of LiNi 1/3 Mn 1/3 Co 1/3 O 2 /graphite batteries based on aqueous binder[J]. Journal of Power Sources ,2014,248:915-922. [8] Roder P,Baba N,Wiemhofer H D. A detailed thermal study of a LiNi 0.33 C 0.33 Mn 0.33 O 2 /LiMn 2 O 4 based lithium ion cell by accelerating rate and differential scanning calorimetry[J]. Journal of Power Sources ,2014,248:978-987. [9] Hy S,Felix F,Rick J, et al . Direct in situ observation of Li 2 O evolution on Li-rich high-capacity cathode material, Li[Ni x Li (1-2 x )/3 Mn (2- x )/3 ]O 2 (0≤ x ≤0.5)[J]. Journal of the American Chemical Society ,2014,136(3):999-1007. [10] Lee E S,Manthiram A. Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay[J]. Journal of Materials Chemistry A ,2014,2(11): 3932-3939. [11] Bloom I,Trahey L,Abouimrane A, et al . Effect of interface modifications on voltage fade in 0.5Li 2 MnO 3 center dot 0.5LiNi 0.375 Mn 0.375 Co 0.25 O 2 cathode materials[J]. Journal of Power Sources ,2014,249:509-514. [12] Li X B,Xu M Q,Chen Y J, et al . Surface study of electrodes after long-term cycling in Li 1.2 Ni 0.15 Mn 0.55 Co 0.1 O 2 graphite lithium-ion cells[J]. Journal of Power Sources ,2014,248:1077-1084. [13] Stiaszny B,Ziegler J C,Krauss E E, et al . Electrochemical characterization and post-mortem analysis of aged LiMn 2 O 4 -Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 /graphite lithium ion batteries. Part I:Cycle aging[J]. Journal of Power Sources ,2014,251:439-450. [14] Wang Z Y,Liu E Z,Guo L C, et al . Cycle performance improvement of Li-rich layered cathode material Li [Li 0.2 Mn 0.54 Ni 0.13 Co 0.13 ]O 2 by ZrO 2 coating[J]. Surface & Coatings Technology ,2013,235:570-576. [15] Jacob C,Jian J,Zhu Y Y, et al . A new approach to investigate Li 2 MnO 3 and Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 mixed phase cathode materials[J]. Journal of Materials Chemistry A ,2014,2(7):2283-2289. [16] Ju J W,Lee E J,Yoon C S, et al . Optimization of layered cathode material with full concentration gradient for lithium-ion batteries[J]. Journal of Physical Chemistry C ,2014,118(1):175-182. [17] Kim J I,Park S M,Roh K C, et al . Effect of manganese vanadate formed on the surface of spinel lithium manganese oxide cathode on high temperature cycle life performance[J]. Bulletin of the Korean Chemical Society ,2013,34(9):2573-2576. [18] Kumar S,Nayak P K,Hariharan K S, et al . Temperature and potential dependence electrochemical impedance studies of LiMn 2 O 4 [J]. Journal of Applied Electrochemistry ,2014,44(1):61-71. [19] Lee Y,Mun J,Kim D W, et al . Surface modification of LiNi 0.5 Mn 1.5 O 4 cathodes with ZnAl 2 O 4 by a sol-gel method for lithium ion batteries[J]. Electrochimica Acta ,2014,115:326-331. [20] Liu G Q,Li Y,Ma B Y, et al . Study of the intrinsic electrochemical properties of spinel LiNi 0.5 Mn 1.5 O 4 [J]. Electrochimica Acta ,2013,112:557-561. [21] Yao Y L,Liu H C,Li G C, et al . Multi-shelled porous LiNi 0.5 Mn 1.5 O 4 microspheres as a 5 V cathode material for lithium-ion batteries[J]. Materials Chemistry and Physics ,2014,143(2): 867-872. [22] Church B C,Kaminski D T,Jiang J W. Corrosion of aluminum electrodes in aqueous slurries for lithium-ion batteries[J]. Journal of Materials Science ,2014,49(8): 3234-3241. [23] Wongittharom N,Lee T C,Hung I M, et al . Ionic liquid electrolytes for high-voltage rechargeable Li/LiNi 0.5 Mn 1.5 O 4 cells[J]. Journal of Materials Chemistry A ,2014,2(10):3613-3620. [24] Wang B,Wang S,Liu P, et al . Growth of LiFePO 4 nanoplatelets with orientated (010) facets on graphene for fast lithium storage[J]. Materials Letters ,2014,118:137-141. [25] Wu K,Yang J,Qiu X Y, et al . Study of spinel Li 4 Ti 5 O 12 electrode reaction mechanism by electrochemical impedance spectroscopy[J]. Electrochimica Acta ,2013,108:841-851. [26] Ramdon S,Bhushan B,Nagpure S C. In situ electrochemical studies of lithium-ion battery cathodes using atomic force microscopy[J]. Journal of Power Sources ,2014,249:373-384. [27] Wen B H,Chernova N A,Zhang R B, et al . Layered molybdenum (oxy)pyrophosphate as cathode for lithium-ion batteries[J]. Chemistry of Materials ,2013,25(17):3513-3521. [28] Ma Z P,Shao G J,Wang G L, et al . Effects of Nb-doped on the structure and electrochemical performance of LiFePO 4 /C composites[J]. Journal of Solid State Chemistry ,2014,210(1):232-237. [29] Nanda J,Martha S K,Porter W D, et al . Thermophysical properties of LiFePO 4 cathodes with carbonized pitch coatings and organic binders: Experiments and first-principles modeling[J]. Journal of Power Sources ,2014,251:8-13. [30] Stroe D,Swierczynski M,Stan A I, et al . Experimental investigation on the internal resistance of lithium iron phosphate battery cells during calendar ageing [C]//39th Annual Conference of the Ieee Industrial Electronics Society,2013:6734-6739. [31] Masese T,Orikasa Y,Tassel C, et al . Relationship between phase transition involving cationic exchange and charge-discharge rate in Li 2 FeSiO 4 [J]. Chemistry of Materials ,2014,26(3): 1380-1384. [32] Nara H,Yokoshima T,Otaki M, et al . Structural analysis of highly-durable Si-O-C composite anode prepared by electrodeposition for lithium secondary batteries[J]. Electrochimica Acta ,2013,110:403-410. [33] Luo L L,Wu J S,Luo J Y, et al . Dynamics of electrochemical lithiation/delithiation of graphene-encapsulated silicon nanoparticles studied by in-situ TEM[J]. Scientific Reports ,2014. [34] Hovington P,Dontigny M,Guerfi A, et al . In situ scanning electron microscope study and microstructural evolution of nano silicon anode for high energy Li-ion batteries[J]. Journal of Power Sources ,2014,248:457-464. [35] Lotfabad E M,Kalisvaart P,Kohandehghan A, et al . Si nanotubes ALD coated with TiO 2 , TiN or Al 2 O 3 as high performance lithium ion battery anodes[J]. Journal of Materials Chemistry A ,2014,2(8):2504-2516. [36] Ye J C,An Y H,Heo T W, et al . Enhanced lithiation and fracture behavior of silicon mesoscale pillars via atomic layer coatings and geometry design[J]. Journal of Power Sources ,2014,248:447-456. [37] Yi R,Dai F,Gordin M L, et al . Influence of silicon nanoscale building blocks size and carbon coating on the performance of micro-sized Si-C composite Li-ion anodes[J]. Advanced Energy Materials ,2013,3(11):1507-1515. [38] Bogart T D,Oka D,Lu X T, et al . Lithium ion battery peformance of silicon nanowires with carbon skin[J]. Acs Nano ,2014,8(1):915-922. [39] Boles S T,Thompson C V,Kraft O, et al . In situ tensile and creep testing of lithiated silicon nanowires[J]. Applied Physics Letters ,2013,103(26). [40] Ge M Y,Lu Y H,Ercius P, et al . Large-scale fabrication,3D tomography,and lithium-ion battery application of porous silicon[J]. Nano Letters ,2014,14(1):261-268. [41] Gu M,Xiao X C,Liu G, et al . Mesoscale origin of the enhanced cycling-stability of the Si-conductive polymer anode for Li-ion batteries[J]. Scientific Reports ,2014,4. [42] Hassan F M,Chabot V,Elsayed A R, et al . Engineered Si electrode nanoarchitecture:A scalable postfabrication treatment for the production of next-generation Li-ion batteries[J]. Nano Letters ,2014,14(1):277-283. [43] Wang Z G,Gu M,Zhou Y G, et al . Electron-rich driven electrochemical solid-state amorphization in Li-Si alloys[J]. Nano Letters ,2013,13(9):4511-4516. [44] Kaspar J,Graczyk-zajac M,Riedel R. Determination of the chemical diffusion coefficient of Li-ions in carbon-rich silicon oxycarbide anodes by electro-analytical methods[J]. Electrochimica Acta ,2014,115:665-670. [45] Guo C F,Wang D L,Liu T F, et al . A three dimensional SiO x /C@RGO nanocomposite as a high energy anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A ,2014,2(10):3521-3527. [46] Chen S Q,Bao P T,Huang X D, et al . Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance[J]. Nano Research ,2014,7(1):85-94. [47] Cervera R B,Suzuki N,Ohnishi T, et al . High performance silicon-based anodes in solid-state lithium batteries[J]. Energy & Environmental Science ,2014,7(2):662-666. [48] Kang I S,Lee Y S,Kim D W. Improved cycling stability of lithium electrodes in rechargeable lithium batteries[J]. Journal of the Electrochemical Society ,2014,161(1):A53-57. [49] IshidA N,Fukumitsu H,Kimura H, et al . Direct mapping of Li distribution in electrochemically lithiated graphite anodes using scanning Auger electron microscopy[J]. Journal of Power Sources ,2014,248:1118-1122. [50] Kim H J,Zhang K,Choi J M, et al . Controlled thermal sintering of a metal-metal oxide-carbon ternary composite with a multiscale hollow nanostructure for use as an anode material in Li-ion batteries[J]. Chemical Communications ,2014,50(20):2589-2591. [51] Gong Y J,Yang S B,Zhan L, et al . A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage[J]. Advanced Functional Materials ,2014,24(1):125-130. [52] Zhu Z Q,Wang S W,Du J, et al . Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries[J]. Nano Letters ,2014,14(1):153-157. [53] Buck M R,Biacchi A J,Schaak R E. Insights into the thermal decomposition of Co(II) oleate for the shape-controlled synthesis of wurtzite-type CoO nanocrystals[J]. Chemistry of Materials ,2014,26(3):1492-1499. [54] Cai J G,Chen S Y,Ji M, et al . Organic additive-free synthesis of mesocrystalline hematite nanoplates via two-dimensional oriented attachment[J]. Crystengcomm ,2014,16(8):1553-1559. [55] Li N,Song H W,Cui H, et al . Sn@graphene grown on vertically aligned graphene for high-capacity,high-rate,and long-life lithium storage[J]. Nano Energy ,2014,3:102-112. [56] Raghu S C,Ulaganathan M,Aravindan V, et al . Palladium- and gold-nanoparticle-modified porous carbon as a high-power anode for lithium-ion batteries[J]. Chemphyschem ,2013,14(17):3887-3890. [57] Hayashi A,Muramatsu H,Ohtomo T, et al . Improved chemical stability and cyclability in Li 2 S-P 2 S 5 -P 2 O 5 -ZnO composite electrolytes for all-solid-state rechargeable lithium batteries[J]. Journal of Alloys and Compounds ,2014,591:247-250. [58] Kim S,Hirayama M,Cho W, et al . Low temperature synthesis and ionic conductivity of the epitaxial Li 0.17 La 0.61 TiO 3 film electrolyte[J]. Crystengcomm ,2014,16(6):1044-1049. [59] Blanga R,Golodnitsky D,Ardel G, et al . Quasi-solid polymer-in-ceramic membrane for Li-ion batteries[J]. Electrochimica Acta ,2013,114:325-333. [60] Choi K H,Cho S J,Kim S H, et al . Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries[J]. Advanced Functional Materials ,2014,24(1):44-52. [61] Golmon S,Maute K,Dunn M L. A design optimization methodology for Li + batteries[J]. Journal of Power Sources ,2014,253:239-250. [62] Park M S,Ma S B,Lee D J, et al . A highly reversible lithium metal anode[J]. Scientific Reports ,2014,4. [63] Porion P,Dougassa Y R,Tessier C, et al . Comparative study on transport properties for LiFAP and LiPF 6 in alkyl-carbonates as electrolytes through conductivity,viscosity and NMR self-diffusion measurements[J]. Electrochimica Acta ,2013,114:95-104. [64] Nanini-Maury E,Swiatowska J,Chagnes A, et al . Electrochemical behavior of sebaconitrile as a cosolvent in the formulation of electrolytes at high potentials for lithium-ion batteries[J]. Electrochimica Acta ,2014,115:223-233. [65] Kubota K,Matsumoto H. Investigation of an intermediate temperature molten lithium salt based on fluorosulfonyl(trifluoromethylsulfonyl)amide as a solvent-free lithium battery electrolyte[J]. Journal of Physical Chemistry C ,2013,117(37): 18829-18836. [66] Scheers J,Lim D H,Kim J K, et al . All fluorine-free lithium battery electrolytes[J]. Journal of Power Sources ,2014,251:451-458. [67] Murugesan S,Quintero O A,Chou B P, et al . Wide electrochemical window ionic salt for use in electropositive metal electrodeposition and solid state Li-ion batteries[J]. Journal of Materials Chemistry A ,2014,2(7): 2194-2201. [68] Fujii K,Hamano H,Doi H, et al . Unusual Li + ion solvation structure in bis(fluorosulfonyl)amide based ionic liquid[J]. Journal of Physical Chemistry C ,2013,117(38): 19314-19324. [69] Petibon R,Henry E C,Burns J C, et al . Comparative study of vinyl ethylene carbonate (VEC) and vinylene carbonate (VC) in LiCoO 2 /graphite pouch cells using high precision coulometry and electrochemical impedance spectroscopy measurements on symmetric cells[J]. Journal of the Electrochemical Society ,2014,161(1):A66-74. [70] Chretien F,Jones J,Damas C, et al . Impact of solid electrolyte interphase lithium salts on cycling ability of Li-ion battery:Beneficial effect of glymes additives[J]. Journal of Power Sources ,2014,248:969-977. [71] Wang J T,Wang Y,huang B, et al . Silicon supported on stable Si-O-C skeleton in high-performance lithium-ion battery anode materials[J]. Acta Physico-Chimica Sinica ,2014,30(2):305. [72] Lei Y,Lu J,Luo X Y, et al . Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition:Application for rechargeable lithium-O 2 battery[J]. Nano Letters ,2013,13(9):4182-4189. [73] Zhao G Y,Lv J X,Xu Z M, et al . Carbon and binder free rechargeable Li-O 2 battery cathode with Pt/Co 3 O 4 flake arrays as catalyst[J]. Journal of Power Sources ,2014,248:1270-1274. [74] Huang J Q,Zhang Q,Peng H J, et al . Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries[J]. Energy & Environmental Science ,2014,7(1):347-353. [75] Huang C,Xiao J,Shao Y Y, et al . Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures[J]. Nature Communications ,2014,5. [76] Wang L,Wang D,Zhang F X, et al . Interface chemistry guided long-cycle-life Li-S battery[J]. Nano Letters ,2013,13(9): 4206-4211. [77] Urbonaite S,Novak P. Importance of 'unimportant' experimental parameters in Li-S battery development[J]. Journal of Power Sources ,2014,249:497-502. [78] Han K,Shen J M,Hayner C M, et al . Li 2 S-reduced graphene oxide nanocomposites as cathode material for lithium sulfur batteries[J]. Journal of Power Sources ,2014,251:331-337. [79] Fang W F,Ramadass P,Zhang Z M. Study of internal short in a Li-ion cell-II. Numerical investigation using a 3D electrochemical-thermal model[J]. Journal of Power Sources ,2014,248:1090-1098. [80] Huria T,Ludovici G,Lutzemberger G. State of charge estimation of high power lithium iron phosphate cells[J]. Journal of Power Sources ,2014,249:92-102. [81] Ecker M,Nieto N,Kabitz S, et al . Calendar and cycle life study of Li(NiMnCo)O 2 -based 18650 lithiumion batteries[J]. Journal of Power Sources ,2014,248:839-851. [82] Cobb C L,Blanco M. Modeling mass and density distribution effects on the performance of co-extruded electrodes for high energy density lithium-ion batteries[J]. Journal of Power Sources ,2014,249:357-366. [83] Guo Z,Qiu X P,Hou G D, et al . State of health estimation for lithium ion batteries based on charging curves[J]. Journal of Power Sources ,2014,249:457-462. [84] Chiu K C,Lin C H,Yeh S F, et al . An electrochemical modeling of lithium-ion battery nail penetration[J]. Journal of Power Sources ,2014,251:254-263. [85] Heubner C,Schneider M,Lammel C, et al . In-operando temperature measurement across the interfaces of a lithium-ion battery cell[J]. Electrochimica Acta ,2013,113:730-734. [86] Saw L H,Somasundaram K,Ye Y, et al . Electro-thermal analysis of lithium iron phosphate battery for electric vehicles[J]. Journal of Power Sources ,2014,249:231-238. [87] Zavalis T G,Klett M,Kjell M H, et al . Aging in lithium-ion batteries:Model and experimental investigation of harvested LiFePO 4 and mesocarbon microbead graphite electrodes[J]. Electrochimica Acta ,2013,110:335-348. [88] Jung S,Kang D. Multi-dimensional modeling of large-scale lithium-ion batteries[J]. Journal of Power Sources ,2014,248:498-509. [89] Xie Y Y,Li J Y,Yuan C. Multiphysics modeling of lithium ion battery capacity fading process with solid-electrolyte interphase growth by elementary reaction kinetics[J]. Journal of Power Sources ,2014,248:172-179. [90] Chou C Y,Hwang G S. Lithiation behavior of silicon-rich oxide (SiO 1/3 ):A first-principles study[J]. Chemistry of Materials ,2013,25(17):3435-3440. [91] Dargaville S,Farrell T W. A comparison of mathematical models for phase-change in high-rate LiFePO 4 cathodes[J]. Electrochimica Acta ,2013,111:474-490. [92] Diddens D,Heuer A. Simulation study of the lithium ion transport mechanism in ternary polymer electrolytes: The critical role of the segmental mobility[J]. Journal of Physical Chemistry B ,2014,118(4):1113-1125. [93] Hwang J,Kim M,Cha H Y, et al . Metal free growth of graphene on quartz substrate using chemical vapor deposition (CVD)[J]. Journal of Nanoscience and Nanotechnology ,2014,14(4):2979-2983. [94] Rohrer J,Albe K. Insights into degradation of Si anodes from first-principle calculations[J]. Journal of Physical Chemistry C ,2013,117(37):18796-18803. [95] Zeng G B,Caputo R,Carriazo D, et al . Tailoring two polymorphs of LiFePO 4 by efficient microwave-assisted synthesis: A combined experimental and theoretical study[J]. Chemistry of Materials ,2013,25(17):3399-3407. [96] He Y L,Hu H J,Song Y C, et al . Effects of concentration-dependent elastic modulus on the diffusion of lithium ions and diffusion induced stress in layered battery electrodes[J]. Journal of Power Sources ,2014,248:517-523. [97] Khandelwal A,Hariharan K S,Kumar V S, et al . Generalized moving boundary model for charge-discharge of LiFePO 4 /C cells[J]. Journal of Power Sources ,2014,248:101-114. [98] Pascal T A,Boesenberg U,Kostecki R, et al . Finite temperature effects on the X-ray absorption spectra of lithium compounds:First-principles interpretation of X-ray Raman measurements[J]. Journal of Chemical Physics ,2014,140(3): [99] Lee Y,Ryou M H,Seo M, et al . Effect of polydopamine surface coating on polyethylene separators as a function of their porosity for high-power Li-ion batteries[J]. Electrochimica Acta ,2013,113:433-438. [100] Park Y S,Oh E S,Lee S M. Effect of polymeric binder type on the thermal stability and tolerance to roll-pressing of spherical natural graphite anodes for Li-ion batteries[J]. Journal of Power Sources ,2014,248:1191-1196. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[7] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[8] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[9] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[12] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[13] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[14] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[15] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||