Energy Storage Science and Technology ›› 2015, Vol. 4 ›› Issue (6): 556-568.doi: 10.3969/j.issn.2095-4239.2015.06.003
• Research highlight • Previous Articles Next Articles
WANG Hao, YAN Yong, LIN Mingxiang, CHEN Bin, HU Fei, ZHAN Yuanjie, CHEN Yuyang, ZHAO Junnian, WU Yida, YU Hailong, LIU Yanyan, BEN Liubin, HUANG Xuejie
Received:
2015-10-18
Online:
2015-12-19
Published:
2015-12-19
CLC Number:
WANG Hao, YAN Yong, LIN Mingxiang, CHEN Bin, HU Fei, ZHAN Yuanjie, CHEN Yuyang, ZHAO Junnian, WU Yida, YU Hailong, LIU Yanyan, BEN Liubin, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Aug. 1,2015 to Sept. 30,2015)[J]. Energy Storage Science and Technology, 2015, 4(6): 556-568.
[1] Kikkawa J,Terada S,Gunji A, et al . Chemical states of overcharged LiCoO 2 particle surfaces and interiors observed using electron energy-loss spectroscopy[J] . Journal of Physical Chemistry C ,2015,119(28):15823-15830. [2] Robertz R,Novak P. Structural changes and microstrain generated on LiNi 0.80 Co 0.15 Al 0.05 O 2 during cycling:Effects on the electrochemical performance[J] . Journal of the Electrochemical Society ,2015,162(9):A1823-A1828. [3] Wolff-Goodrich S,Lin F,Markus I M, et al . Tailoring the surface properties of LiNi 0.4 Mn 0.4 Co 0.2 O 2 by titanium substitution for improved high voltage cycling performance[J] . Physical Chemistry Chemical Physics ,2015,17(34):21778-21781. [4] Yang S,Yan B,Li T, et al . In situ studies of lithium-ion diffusion in a lithium-rich thin film cathode by scanning probe microscopy techniques[J] . Physical Chemistry Chemical Physics ,2015,17(34):22235-22242. [5] Biao L,Huijun Y,Jin M, et al . Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions:Towards better electrochemical performance[J] . Advanced Functional Materials ,2014,24(32):5112-5118. [6] Lim B B,Yoon S J,Park K J, et al . Advanced concentration gradient cathode material with two-slope for high-energy and safe lithium batteries[J] . Advanced Functional Materials ,2015,25(29):4673-4680. [7] Liu W,Oh P,Liu X, et al . Countering voltage decay and capacity fading of lithium-rich cathode material at 60 degrees C by hybrid surface protection layers[J] . Advanced Energy Materials ,2015,5(13):doi:10.1002/aenm.201500274. [8] Yu Z,Shang S L,Gordin M L, et al . Ti-substituted Li Li 0.26 Mn 0.6 Ti x Ni 0.07 Co 0.07 O 2 layered cathode material with improved structural stability and suppressed voltage fading[J] . Journal of Materials Chemistry A ,2015,3(33):17376-17384. [9] Devaraj A,Gu M,Colby R, et al . Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes[J] . Nature Communications ,2015,6(8014):doi:10.1038/ncomms9014. [10] Nayak P K,Grinblat J,Levi M, et al . Effect of Fe in suppressing the discharge voltage decay of high capacity Li-rich cathodes for Li-ion batteries[J] . Journal of Solid State Electrochemistry ,2015,19(9):2781-2792. [11] Wise A M,Ban C,Weker J N, et al . Effect of Al 2 O 3 coating on stabilizing LiNi 0.4 Mn 0.4 Co 0.2 O 2 cathodes[J] . Chemistry of Materials ,2015,27(17):6146-6154. [12] Yan P,Zheng J,Lv D, et al . Atomic-resolution visualization of distinctive chemical mixing behavior of Ni, Co, and Mn with Li in layered lithium transition-metal oxide cathode materials[J] . Chemistry of Materials ,2015,27(15):5393-5401. [13] Jaber-Ansari L,Puntambekar K P,Kim S, et al . Suppressing manganese dissolution from lithium manganese oxide spinel cathodes with single-layer graphene[J] . Advanced Energy Materials ,2015,5(17):doi:10.1002/aenm.201500646. [14] Jeong M,Lee M J,Cho J, et al . Surface Mn oxidation state controlled spinel LiMn 2 O 4 as a cathode material for high-energy Li-ion batteries[J] . Advanced Energy Materials ,2015,5(13):doi:10.1002/aenm.201500440. [15] Guo L,Zhang Y,Wang J, et al . Unlocking the energy capabilities of micron-sized LiFePO 4 [J] . Nature Communications ,2015,6:doi:10.1038/ncomms8898. [16] Yu D Y W,Zhao M,Hoster H E. Suppressing vertical displacement of lithiated silicon particles in high volumetric capacity battery electrodes[J] . Chemelectrochem ,2015,2(8):1090-1095. [17] Jaumann T,Balach J,Klose M, et al . SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries:The role of electrode preparation, FEC addition and binders[J] . Physical Chemistry Chemical Physics ,2015,17(38):24956-24967. [18] Van Havenbergh K,Turner S,Driesen K, et al . Solid-electrolyte interphase evolution of carbon-coated silicon nanoparticles for lithium-ion batteries monitored by transmission electron microscopy and impedance spectroscopy[J] . Energy Technology ,2015,3(7):699-708. [19] Jeong J,Reece M J,Pyo M. Improved lithium-storage capability and cyclability of tin dioxide confined in highly crosslinked graphene framework[J] . Journal of the Electrochemical Society ,2015,162(9):A1702-A1707. [20] Nordh T,Younesi R,Brandell D, et al . Depth profiling the solid electrolyte interpahase on lithium titanate (Li 4 Ti 5 O 12 ) using synchrotron-based photoelectron spectroscopy[J] . Journal of Power Sources ,2015,294:173-179. [21] Maruyama H,Nakano H,Ogawa M, et al . Improving battery safety by reducing the formation of Li dendrites with the use of amorphous silicon polymer anodes[J] . Scientific Reports ,2015,5:doi:10.1038/srep13219. [22] Junjun W,Hyea K,Dong-Chan L, et al . Influence of annealing on ionic transfer and storage stability of Li 2 S-P 2 S 5 solid electrolyte[J] . Journal of Power Sources ,2015,294:494-500. [23] Devaux D,Gle D,Phan T N T, et al . Optimization of block copolymer electrolytes for lithium metal batteries[J] . Chemistry of Materials ,2015,27(13):4682-4692. [24] Zhang H,Han H,Cheng X, et al . Lithium salt with a super-delocalized perfluorinated sulfonimide anion as conducting salt for lithium-ion cells:Physicochemical and electrochemical properties[J] . Journal of Power Sources ,2015,296:142-149. [25] Khasanov M,Pazhetnov E,Shin W C. Dicarboxylate-substituted ethylene carbonate as an sei-forming additive for lithium-ion batteries[J] . Journal of the Electrochemical Society ,2015,162(9):A1892-A1898. [26] Chen J,Gao Y,Li C, et al . Interface modification in high voltage spinel lithium-ion battery by using N -methylpyrrole as an electrolyte additive[J] . Electrochimica Acta ,2015,178:127-133. [27] Huang W,Xing L,Zhang R, et al . A novel electrolyte additive for improving the interfacial stability of high voltage lithium nickel manganese oxide cathode[J] . Journal of Power Sources ,2015,293:71-77. [28] Shin H,Park J,Sastry A M, et al . Effects of fluoroethylene carbonate (FEC) on anode and cathode interfaces at elevated temperatures[J] . Journal of the Electrochemical Society ,2015,162(9):A1683- A1692. [29] Luo R,Xu D,Zeng X, et al . Enhancing the cycling stability of a carbonate-based electrolyte for high-voltage lithium batteries by adding succinic anhydride[J] . Ionics ,2015,21(9):2535-2542. [30] Pires J,Castets A,Timperman L, et al . Tris(2,2,2-trifluoroethyl) phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J] . Journal of Power Sources ,2015,296:413-425. [31] Bernhard R,Metzger M,Gasteiger H A. Gas evolution at graphite anodes depending on electrolyte water content and SEI quality studied by on-line electrochemical mass spectrometry[J] . Journal of the Electrochemical Society ,2015,162(10):A1984-A1989. [32] Togasaki N,Momma T,Osaka T. Role of the solid electrolyte interphase on a Li metal anode in a dimethylsulfoxide-based electrolyte for a lithium-oxygen battery[J] . Journal of Power Sources ,2015,294:588-592. [33] Garcia J M,Horn H W,Rice J E. Dominant decomposition pathways for ethereal solvents in LiO 2 batteries[J] . Journal of Physical Chemistry Letters ,2015,6(10):1795-1799. [34] Huang J,Faghri A. Capacity enhancement of a lithium oxygen flow battery[J] . Electrochimica Acta ,2015,174:908-918. [35] Suzuki Y,Kami K,Watanabe K, et al . Characteristics of discharge products in all-solid-state Li-air batteries[J] . Solid State Ionics ,2015,278:222-227. [36] Liu Q C,Xu J J,Xu D, et al . Flexible lithium-oxygen battery based on a recoverable cathode[J] . Nature Communications ,2015,6:7892-7892. [37] Zhou G,Paek E,Hwang G S, et al . Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge[J] . Nature Communications ,2015,6(7760):doi:10.1038/ ncomms8760. [38] Yu X,Joseph J,Manthiram A. Polymer lithium-sulfur batteries with a Nafion membrane and an advanced sulfur electrode[J] . Journal of Materials Chemistry A ,2015,3(30):15683-15691. [39] Yan J,Liu X,Yao M, et al . Long-life, high-efficiency lithium-sulfur battery from a nanoassembled cathode[J] . Chemistry of Materials ,2015,27(14):5080-5087. [40] Takeuchi T,Kageyama H,Nakanishi K, et al . Preparation of Li 2 S-FeS x composite positive electrode materials and their electrochemical properties with pre-cycling treatments[J] . Journal of the Electrochemical Society ,2015,162(9):A1745-A1750. [41] Song M K,Zhang Y,Cairns E J. Effects of cell construction parameters on the performance of lithium/sulfur cells[J] . AIChE Journal ,2015,61(9):2749-2756. [42] Kim J H,Kim T,Jeong Y C, et al . Stabilization of insoluble discharge products by facile aniline modification for high performance Li-S batteries[J] . Advanced Energy Materials ,2015,5(14):doi:10.1002/aenm.201500268. [43] Park K,Cho J H,Jang J H, et al . Trapping lithium polysulfides of a Li-S battery by forming lithium bonds in a polymer matrix[J] . Energy & Environmental Science ,2015,8(8):2389-2395. [44] Hyungjun N,Jongchan S,Jung-Ki P, et al . A new insight on capacity fading of lithium-sulfur batteries:The effect of Li 2 S phase structure[J] . Journal of Power Sources ,2015,293:329-335. [45] Jha H,Buchberger I,Cui X, et al . Li-S batteries with Li 2 S cathodes and Si/C anodes[J] . Journal of the Electrochemical Society ,2015,162(9):A1829-A1835. [46] Joo-Seong K,Tae Hoon H,Byung Gon K, et al . A lithium-sulfur battery with a high areal energy density[J] . Advanced Functional Materials ,2014,24(34):5359-5367. [47] Barghamadi M,Best A S,Bhatt A I, et al . Effect of LiNO 3 additive and pyrrolidinium ionic liquid on the solid electrolyte interphase in the lithium sulfur battery[J] . Journal of Power Sources ,2015,295:212-220. [48] Chen H,Wang C,Dai Y, et al . Rational design of cathode structure for high rate performance lithium-sulfur batteries[J] . Nano Letters ,2015,15(8):5443-5448. [49] Hakari T,Nagao M,Hayashi A, et al . All-solid-state lithium batteries with Li 3 PS 4 glass as active material[J] . Journal of Power Sources ,2015,293:721-725. [50] Cuisinier M,Hart C,Balasubramanian M, et al . Radical or not radical:Revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes[J] . Advanced Energy Materials ,2015,5(16):doi:10.1002/aenm.201401801. [51] Li Z,Zhang S,Zhang C, et al . One-pot pyrolysis of lithium sulfate and graphene nanoplatelet aggregates: In situ formed Li 2 S/graphene composite for lithium-sulfur batteries[J] . Nanoscale ,2015,7(34):14385-14392. [52] Lv D,Yan P,Shao Y, et al . High performance Li-ion sulfur batteries enabled by intercalation chemistry[J] . Chemical Communications ,2015,51(70):13454-13457. [53] Agostini M,Scrosati B,Hassoun J. An advanced lithium-ion sulfur battery for high energy storage[J] . Advanced Energy Materials ,2015,5(16):doi:10.1002/aenm.201500481. [54] Balach J,Jaumann T,Klose M, et al . Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries[J] . Advanced Functional Materials ,2015,25(33):5285-5291. [55] Fan F Y,Carter W C,Chiang Y M. Mechanism and kinetics of Li 2 S precipitation in lithium-sulfur batteries[J] . Advanced Materials ( Deerfield Beach , Fla. ),2015,27(35):5203-5209. [56] Al Salem H,Babu G,Rao C V, et al . Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries[J] . Journal of the American Chemical Society ,2015,137(36):11542-11545. [57] Zu C,Azimi N,Zhang Z, et al . Insight into lithium-metal anodes in lithium-sulfur batteries with a fluorinated ether electrolyte[J] . Journal of Materials Chemistry A ,2015,3(28):14864-14870. [58] Hagen M,Hanselmann D,Ahlbrecht K, et al . Lithium-sulfur cells:The gap between the state-of-the-art and the requirements for high energy battery cells[J] . Advanced Energy Materials ,2015,5(16):doi:10.1002/aenm.201401986. [59] Yamada I,Miyazaki K,Fukutsuka T, et al . Lithium-ion transfer at the interfaces between LiCoO 2 and LiMn 2 O 4 thin film electrodes and organic electrolytes[J] . Journal of Power Sources ,2015,294:460-464. [60] Hu X,Chen C,Yan J, et al . Electrochemical and in - situ scanning tunneling microscopy studies of bis(fluorosulfonyl)imide and bis(trifluoromethanesulfonyl) imide based ionic liquids on graphite and gold electrodes and lithium salt influence[J] . Journal of Power Sources ,2015,293:187-195. [61] Lahiri A,Carstens T,Atkin R, et al . In situ atomic force microscopic studies of the interfacial multilayer nanostructure of LiTFSI- Py-1,Py- 4 TFSI on Au(111):Influence of Li + concentration on the Au(111)/IL interface[J] . Journal of Physical Chemistry C ,2015,119(29):16734-16742. [62] Buchner F,Bozorgchenani M,Uhl B, et al . Reactive interaction of (sub-)monolayers and multi layers of the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoro-methylsulfonyl)imide with Co adsorbed lithium on Cu(111)[J] . Journal of Physical Chemistry C ,2015,119(29):16649-16659. [63] Bizeray A M,Zhao S,Duncan S R, et al . Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter[J] . Journal of Power Sources ,2015,296:400-412. [64] Feng X,He X,Ouyang M, et al . Thermal runaway propagation model for designing a safer battery pack with 25 A·h LiNi x Co y Mn z O 2 large format lithium ion battery[J] . Applied Energy ,2015,154:74-91. [65] Ahmed R,El Sayed M,Arasaratnam I, et al . Reduced-order electrochemical model parameters identification and SOC estimation for healthy and aged Li-ion batteries. Part I:Parameterization model development for healthy batteries[J] . IEEE Journal of Emerging and Selected Topics in Power Electronics ,2014,2(3):659-677. [66] Ahmed R,El Sayed M,Arasaratnam I, et al . Reduced-order electrochemical model parameters identification and state of charge estimation for healthy and aged Li-ion batteries. Part II:Aged battery model and state of charge estimation[J] . IEEE Journal of Emerging and Selected Topics in Power Electronics ,2014,2(3):678-690. [67] Dai H,Zhu L,Zhu J, et al . Adaptive Kalman filtering based internal temperature estimation with an equivalent electrical network thermal model for hard-cased batteries[J] . Journal of Power Sources ,2015,293:351-365. [68] Fell C R,Sun L,Hallac P B, et al . Investigation of the gas generation in lithium titanate anode based lithium ion batteries[J] . Journal of the Electrochemical Society ,2015,162(9):A1916-A1920. [69] Jie Q,Dandan H,Mingzhai S, et al . Effects of neutron and gamma radiation on lithium-ion batteries[J] . Nuclear Instruments and Methods in Physics Research , Section B ( Beam Interactions with Materials and Atoms ),2015,345:27-32. [70] Xiaoyu Z,Verhallen T W,Labohm F, et al . Direct observation of Li-ion transport in electrodes under nonequilibrium conditions using neutron depth profiling[J] . Advanced Energy Materials ,2015,5(15):doi:10.1002/aenm.201500498. [71] Barai P,Smith K,Chen C F, et al . Reduced order modeling of mechanical degradation induced performance decay in lithium-ion battery porous electrodes[J] . Journal of the Electrochemical Society ,2015,162(9):A1751-A1771. [72] Barcellona S,Brenna M,Foiadelli F, et al . Analysis of ageing effect on Li-polymer batteries[J] . The Scientific World Journal ,2015,doi:http://dx.doi.org/10.1155/2015/979321. [73] Chan H L,Sang June B,Minyoung J. A study on effect of lithium ion battery design variables upon features of thermal-runaway using mathematical model and simulation[J] . Journal of Power Sources ,2015,293:498-510. [74] Ecker M,Kaebitz S,Laresgoiti I, et al . Parameterization of a physico-chemical model of a lithium-ion battery II. Model validation[J] . Journal of the Electrochemical Society ,2015,162(9):A1849-A1857. [75] Ecker M,Tran T K D,Dechent P, et al . Parameterization of a physico-chemical model of a lithium-ion battery I. Determination of parameters[J] . Journal of the Electrochemical Society ,2015,162(9):A1836-A1848. [76] Lopez C F,Jeevarajan J A,Mukherjee P P. Experimental analysis of thermal runaway and propagation in lithium-ion battery modules[J] . Journal of the Electrochemical Society ,2015,162(9):A1905-A1915. [77] Marcicki J,Yang X G,Rairigh P. Fault current measurements during crush testing of electrically parallel lithium-ion battery modules[J] . ECS Electrochemistry Letters ,2015,4(9):A97-A99. [78] Schwoebel A,Hausbrand R,Jaegermann W. Interface reactions between LiPON and lithium studied by in - situ X-ray photoemission[J] . Solid State Ionics ,2015,273:51-54. [79] Ghanbari N,Waldmann T,Kasper M, et al . Detection of Li deposition by glow discharge optical emission spectroscopy in post-mortem analysis[J] . ECS Electrochemistry Letters ,2015,4(9):A100-A102. [80] Chang H J,Trease N M,Ilott A J, et al . Investigating Li microstructure formation on Li anodes for lithium batteries by in situ 6 Li/ 7 Li NMR and SEM[J] . Journal of Physical Chemistry C ,2015,119(29):16443-16451. [81] Goutam S,Timmermans J M,Omar N, et al . Comparative study of surface temperature behavior of commercial Li-ion pouch cells of different chemistries and capacities by infrared thermography[J] . Energies ,2015,8(8):8175-8192. [82] Sommer L W,Kiesel P,Ganguli A, et al . Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors[J] . Journal of Power Sources ,2015,296:46-52. [83] Huang J,Ge H,Li Z, et al . Dynamic electrochemical impedance spectroscopy of a three-electrode lithium-ion battery during pulse charge and discharge[J] . Electrochimica Acta ,2015,176:311-320. [84] Allcorn E,Manthiram A. Thermal stability of Sb and Cu 2 Sb anodes in lithium-ion batteries[J] . Journal of the Electrochemical Society ,2015,162(9):A1778-A1786. [85] Barai A,Widanage W D,Marco J, et al . A study of the open circuit voltage characterization technique and hysteresis assessment of lithium-ion cells[J] . Journal of Power Sources ,2015,295:99-107. [86] Gorse S,Kugler B,Samtleben T, et al . An explanation of the ageing mechanism of Li-ion batteries by metallographic and material analysis[J] . Praktische Metallographie-Practical Metallography ,2014,51(12):829-848. [87] Yong L,Jie Y,Jian S. Microscale characterization of coupled degradation mechanism of graded materials in lithium batteries of electric vehicles[J] . Renewable & Sustainable Energy Reviews ,2015,50:1445-1461. [88] Lopez C F,Jeevarajan J A,Mukherjee P P. Characterization of lithium-ion battery thermal abuse behavior using experimental and computational analysis[J] . Journal of the Electrochemical Society ,2015,162(10):A2163-A2173. [89] Zhu Z,Zhou Y,Yan P, et al . In situ mass spectrometric determination of molecular structural evolution at the solid electrolyte interphase in lithium-ion batteries[J] . Nano Letters ,2015,15(9):6170-6176. [90] Guan P,Liu L,Lin X. Simulation and experiment on solid electrolyte interphase (SEI) morphology evolution and lithium-ion diffusion[J] . Journal of the Electrochemical Society ,2015,162(9):A1798-A1808. [91] Wei Y,Zheng J,Cui S, et al . Kinetics tuning of Li-ion diffusion in layered Li(Ni x Mn y Co z )O 2 [J] . Journal of the American Chemical Society ,2015,137(26):8364-8367. [92] Husch T,Korth M. How to estimate solid-electrolyte-interphase features when screening electrolyte materials[J] . Phys. Chem. Chem. Phys. ,2015,17(35):22799-22808. [93] Kim S,Aykol M,Wolverton C. Surface phase diagram and stability of (001) and (111) LiMn 2 O 4 spinel oxides[J] . Physical Review B ,2015,92(11):doi:http://dx.doi.org/10.1103/PhysRevB.92.115411. [94] Seymour I D,Chakraborty S,Middlemiss D S, et al . Mapping structural changes in electrode materials:Application of the hybrid eigenvector-following density functional theory (DFT) method to layered Li 0.5 MnO 2 [J] . Chemistry of Materials ,2015,27(16):5550-5561. [95] Timoshevskii V,Feng Z,Bevan K H, et al . Emergence of metallic properties at LiFePO 4 surfaces and LiFePO 4 /Li 2 S interfaces:An Ab initio study[J] . ACS Applied Materials & Interfaces ,2015,7(33):18362-18368. [96] Xu S,Jacobs R M,Nguyen H M, et al . Lithium transport through lithium-ion battery cathode coatings[J] . Journal of Materials Chemistry A ,2015,3(33):17248-17272. [97] Wang Y,Richards W D,Ong S P, et al . Design principles for solid-state lithium superionic conductors[J] . Nature Materials ,2015,14(10):1026-1031. [98] Joshi R P,Ozdemir B,Barone V, et al . Hexagonal BC 3 :A robust electrode material for Li, Na, and K ion batteries[J] . Journal of Physical Chemistry Letters ,2015,6(14):2728-2732. [99] Croy J R,Iddir H,Gallagher K, et al . First-charge instabilities of layered-layered lithium-ion-battery materials[J] . Physical Chemistry Chemical Physics ,2015,17(37):24382-24391. [100] Unemoto A,Ikeshoji T,Yasaku S, et al . Stable interface formation between TiS 2 and LiBH 4 in Bulk-Type all-solid-state lithium batteries[J] . Chemistry of Materials ,2015,27(15):5407-5416. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[8] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[9] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[12] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[13] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[14] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[15] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||