Energy Storage Science and Technology ›› 2016, Vol. 5 ›› Issue (2): 159-171.doi: 10.3969/j.issn.2095-4239.2016.02.006
• Research highlight • Previous Articles Next Articles
ZHAN Yuanjie, CHEN Yuyang, HU Fei, CHEN Bin, YAN Yong, LIN Mingxiang, ZHAO Junnian, WU Yida, WANG Hao, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2016-02-16
Revised:
2016-02-20
Online:
2016-03-01
Published:
2016-03-01
CLC Number:
ZHAN Yuanjie, CHEN Yuyang, HU Fei, CHEN Bin, YAN Yong, LIN Mingxiang, ZHAO Junnian, WU Yida, WANG Hao, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Dec. 1,2015 to Jan. 25,2016)[J]. Energy Storage Science and Technology, 2016, 5(2): 159-171.
[1] KONISHI H,HIRANO T,TAKAMATSU D,et al. Effect of composition of transition metals on stability of charged Li-rich layer-structured cathodes, Li 1.2 Ni 0.2- x Mn 0.6- x Co 2 x O 2 ( x =0, 0.033, and 0.067), at high temperatures[J]. Electrochimica Acta,2015,186:591-597. [2] SON I H,PARK J H,KWON S,et al. Self-terminated artificial SEI layer for nickel-rich layered cathode material via mixed gas chemical vapor deposition[J]. Chemistry of Materials,2015,27(21):7370-7379. [3] YE D,SUN C,CHEN Y,et al. Ni-induced stepwise capacity increase in Ni-poor Li-rich cathode materials for high performance lithium ion batteries[J]. Nano Research,2015,8(3):808-820. [4] ZHAO T,LI L,CHEN R,et al. Design of surface protective layer of LiF/FeF 3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries[J]. Nano Energy,2015,15:164-176. [5] SU Y,CUI S,ZHUO Z,et al. Enhancing the high-voltage cycling performance of LiNi 0.5 Mn 0.3 Co 0.2 O 2 by retarding its interfacial reaction with an electrolyte by atomic-layer-deposited Al 2 O 3 [J]. ACS Applied Materials & Interfaces,2015,7(45):25105-25112. [6] LI Y,BETTGE M,BARENO J,et al. Exploring electrochemistry and interface characteristics of lithium-ion cells with Li 1.2 Ni 0.15 Mn 0.55 Co 0.1 O 2 positive and Li 4 Ti 5 O 12 negative electrodes[J]. Journal of the Electrochemical Society,2015,162(13):A7049-A7059. [7] YANG P,ZHENG J,KUPPAN S,et al. Phosphorus enrichment as a new composition in the solid electrolyte interphase of high-voltage cathodes and its effects on battery cycling[J]. Chemistry of Materials,2015,27(21):7447-7451. [8] QUINLAN R,LU A,KWABID Y C,et al. XPS investigation of the electrolyte induced stabilization of LiCoO 2 and "AlPO 4 "-coated LiCoO 2 composite electrodes[J]. Journal of the Electrochemical Society,2016,163(2):A300-A308. [9] ZHAO E,CHEN M,CHEN D,et al. A versatile coating strategy to highly improve the electrochemical properties of layered oxide LiMO 2 (M=Ni 0.5 Mn 0.5 and Ni 1/3 Mn 1/3 Co 1/3 )[J]. ACS Applied Materials & Interfaces,2015,7(49):27096-27105. [10] SHIMOYAMADA A,YAMAMOTO K,YOSHIDA R,et al. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy[J]. Microscopy,2015,64(6):401-408. [11] SHUKLA A K,RAMASSE Q M,OPHUS C,et al. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides[J]. Nature Communications,2015,6:doi:10.1038/ncom ms9711. [12] PIECZONKA N P W,BORGEL V,ZIV B,et al. Lithium polyacrylate (LiPAA) as an advanced binder and a passivating agent for high-voltage Li-ion batteries[J]. Advanced Energy Materials,2015,5(23):doi:10.1002/aenm.201501008. [13] DENG Y F,ZHAO S X,XU Y H,et al. Impact of P-doped in spinel LiNi 0.5 Mn 1.5 O 4 on degree of disorder, grain morphology, and electrochemical performance[J]. Chemistry of Materials,2015,27(22):7734-7742. [14] LIU H,KLOEPSCH R,WANG J,et al. Truncated octahedral LiNi 0.5 Mn 1.5 O 4 cathode material for ultralong-life lithium-ion battery:Positive (100) surfaces in high-voltage spinel system[J]. Journal of Power Sources,2015,300:430-437. [15] SACHS M,GELLERT M,CHEN M,et al. LiNi 0.5 Mn 1.5 O 4 high-voltage cathode coated with Li 4 Ti 5 O 12 :A hard X-ray photoelectron spectroscopy (HAXPES) study[J]. Physical Chemistry Chemical Physics,2015,17(47):31790-31800. [16] HE M,BOULET-ROBLIN L,BOREL P,et al. Effects of solvent, lithium salt, and temperature on stability of carbonate-based electrolytes for 5.0 V LiNi 0.5 Mn 1.5 O 4 electrodes[J]. Journal of the Electrochemical Society,2016,163(2):A83-A89. [17] KIM C A,CHOI H J,LEE J H,et al. Influence of surface modification on electrochemical performance of high voltage spinel ordered-LiNi 0.5 Mn 1.5 O 4 exposed to 5.3 V for 100 h before and after surface modification with ALD method[J]. Electrochimica Acta,2015,184:134-142. [18] CHOI H W,KIM S J,RIMY H,et al. Effect of lithium deficiency on lithium-ion battery cathode Li x Ni 0.5 Mn 1.5 O 4 [J]. Journal of Physical Chemistry C,2015,119(49):27192-27199. [19] BIANCHINI M,FAUTH F,SUARD E,et al. Spinel materials for Li-ion batteries:New insights obtained by operando neutron and synchrotron X-ray diffraction[J]. Acta Crystallogr B Struct. Sci. Cryst. Eng. Mater.,2015,71(P 6):688-701. [20] TAKAHASHI I,ARAI H,MURAYAMA H,et al. Phase transition kinetics of LiNi 0.5 Mn 1.5 O 4 analyzed by temperature-controlled operando X-ray absorption spectroscopy[J]. Physical Chemistry Chemical Physics,2016,18(3):1897-1904. [21] YIM T,KANG K S,MUN J,et al. Understanding the effects of a multi-functionalized additive on the cathode-electyolyte interfacial stability of Ni-rich materials[J]. Journal of Power Sources,2016,302:431-438. [22] ARTHUR Z, CHIU H C,LU X,et al. Spontaneous reaction between an uncharged lithium iron silicate cathode and a LiPF 6 -based electrolyte[J]. Chemical Communications,2016,52(1):190-193. [23] DI L,MANZI D J,VITUCCI F M,et al. Effect of the iron doping in LiCoPO 4 cathode materials for lithium cells[J]. Electrochimica Acta,2015,185:17-27. [24] SCHOIBER J,BERGER R J F,YADA C,et al. A two-step synthesis for Li 2 CoPO 4 F as high-voltage cathode material[J]. Journal of the Electrochemical Society,2015,162(14):A2679-A2683. [25] LI Y,WEKER J N,GENT W E,et al. Dichotomy in the lithiation pathway of ellipsoidal and platelet LiFePO 4 particles revealed through nanoscale operando state-of-charge imaging[J]. Advanced Functional Materials,2015,25(24):3677-3687. [26] KIM H J,CHOI S,LEE S J,et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells[J]. Nano Letters,2016,16(1):282-288. [27] ZHAO H,WEI Y,QIAO R,et al. Conductive polymer binder for high-tap-density nanosilicon material for lithium-ion battery negative electrode application[J]. Nano Lett.,2015,15(12):7927-7932. [28] KWON T W,JEONG Y K,DENIZ E,et al. Dynamic cross-linking of polymeric binders based on host-guest interactions for silicon anodes in lithium ion batteries[J]. ACS Nano,2015,9(11):11317-11324. [29] HASSAN F M,BATMAZ R,LI J,et al. Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithium-ion batteries[J]. Nature Communications,2015,6:doi:10.1038/ncomms9597. [30] SWAMY T,CHIANG Y M. Electrochemical charge transfer reaction kinetics at the silicon-liquid electrolyte interface[J]. Journal of the Electrochemical Society,2015,162(13):A7129-A7134. [31] BORDES A,DE VITO E,HAON C,et al. Investigation of lithium insertion mechanisms of a thin-film Si electrode by coupling time-of-flight secondary-ion mass spectrometry, X-ray photoelectron spectroscopy, and focused-ion-beam/SEM[J]. ACS Applied Materials & Interfaces,2015,7(50):27853-27862. [32] HUANG Y Y,HAN D,HE Y B,et al. Si nanoparticles intercalated into interlayers of slightly exfoliated graphite filled by carbon as anode with high volumetric capacity for lithium-ion battery[J]. Electrochimica Acta,2015,184:364-370. [33] LIU Y,VISHNIAKOU S,YOO J,et al. Engineering heteromaterials to control lithium ion transport pathways[J]. Scientific Reports,2015,5:doi:10.1038/srep18482. [34] BECKER C R,PROKES S M,LOVE C T. Enhanced lithiation cycle stability of ALD-coated confined a-Si microstructures determined using in situ AFM[J]. ACS Applied Materials & Interfaces,2016,8(1):530-537. [35] DOGAN F,VAUGHEY J T. Effect of surface termination on electrochemical performance of silicon thin films[J]. Journal of the Electrochemical Society,2016,163(2):A62-A66. [36] GRILLON N,BOUYSSOU E,JACQUES S,et al. Failure mechanisms analysis of all-solid-state thin film microbatteries from an extended electrochemical reliability study[J]. Journal of the Electrochemical Society,2015,162(14):A2847-A2853. [37] NISHIKAWA K,MOON J,KANAMURA K. In-situ observation of volume expansion behavior of a silicon particle in various electrolytes[J]. Journal of Power Sources,2016,302:46-52. [38] YAN C,CHEN G,SUN J,et al. Edge dislocation surface modification:A new and efficient strategy for realizing outstanding lithium storage performance[J]. Nano Energy,2015,15:558-566. [39] QUACKENBUSH N F,WANGOH L,SCANLON D O,et al. Interfacial effects in δ-Li x VOPO 4 and evolution of the electronic structure[J]. Chemistry of Materials,2015,27(24):8211-8219. [40] MOTOYAMA M,EJIRI M,IRIYAMA Y. Modeling the nucleation and growth of Li at metal current collector/LiPON interfaces[J]. Journal of the Electrochemical Society,2015,162(13):A7067-A7071. [41] GONG C,RUZMETOV D,PEARSE A,et al. Surface/interface effects on high-performance thin-film all-solid-state Li-ion batteries[J]. ACS Applied Materials & Interfaces,2015,7(47):26007-26011. [42] BUCUR C B,LITA A,OSADA N,et al. A soft, multilayered lithium-electrolyte interface[J]. Energy & Environmental Science,2016,9(1):112-116. [43] SHIN W K,PARK S M,LEE Y S,et al. Composite gel electrolytes for suppressing lithium dendrite growth and improving cycling performance of LiNi 0.5 Mn 1.5 O 4 electrodes[J]. Journal of the Electrochemical Society,2015,162(14):A2628-A2634. [44] XIA L,XIA Y,WANG C,et al. 5V-class electrolytes based on fluorinated solvents for Li-ion batteries with excellent cyclability[J]. Chem. Electro. Chem.,2015,2(11):1707-1712. [45] SUO L,BORODIN O,GAO T,et al. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science,2015,350(6263):938-943. [46] SONG Y M,KIM C K,KIM K E,et al. Exploiting chemically and electrochemically reactive phosphite derivatives for high-voltage spinel LiNi 0.5 Mn 1.5 O 4 cathodes[J]. Journal of Power Sources,2016,302:22-30. [47] SEO D M,CAO C N,YOUNG B T,et al. Characterizing solid electrolyte interphase on Sn anode in lithium ion battery[J]. Journal of the Electrochemical Society,2015,162(13):A7091-A7095. [48] QIAN J,XU W,HATTACHARYA P B,et al. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive[J]. Nano Energy,2015,15:135-144. [49] CHOUDHURY S,MANGAL R,AGRAWAL A,et al. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles[J]. Nature Communications,2015,6:10101. [50] SHARAFI A,MEYER H M,NANDA J,et al. Characterizing the Li-Li 7 La 3 Zr 2 O 12 interface stability and kinetics as a function of temperature and current density[J]. Journal of Power Sources,2016,302:135-139. [51] OH D Y,NAM Y J,PARK K H,et al. Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes:Toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries[J]. Advanced Energy Materials,2015,5(22):doi:10.1002/aenm. 201500865. [52] GALLUS D R,WAGNER S R,WIEMERS M,et al. New insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pK(a) value[J]. Electrochimica Acta,2015,184:410-416. [53] NURPEISSOVA A D,PARK I,KIM S S,et al. Epicyanohydrin as an interface stabilizer agent for cathodes of Li-ion batteries[J]. Journal of the Electrochemical Society,2016,163(2):A171-A177. [54] DU F,ZHAO N,LI Y,et al. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes[J]. Journal of Power Sources,2015,300:24-28. [55] JEONG G,KIM H,PARK J H,et al. Nanotechnology enabled rechargeable Li-SO 2 batteries:Another approach towards post-lithium-ion battery systems[J]. Energy & Environmental Science,2015,8(11):3173-3180. [56] CHEN Y,TANG Z,YANG S,et al. A high-voltage all-solid-state lithium-ion battery with Li-Mn-Ni-O and silicon thin-film electrodes[J]. Materials Technology,2015,30(A2):A58-A63. [57] HAKARI T,HAYASHI A,TATSUMISAGO M. Highly utilized lithium sulfide active material by enhancing conductivity in all-solid-state batteries[J]. Chemistry Letters,2015,44(12):1664-1666. [58] ZHOU Y,ZHOU C,LI Q,et al. Enabling prominent high-rate and cycle performances in one lithium-sulfur battery:Designing permselective gateways for Li + transportation in holey-CNT/S cathodes[J]. Advanced Materials,2015,27(25):3774-3781. [59] MA Z X,HUANG Q,JIANG Q Q,et al. Enhanced cycling stability of lithium-sulfur batteries by electrostatic-interaction[J]. Electrochimica Acta,2015,182:884-890. [60] KIM H M,HWANG J Y,MANTHIRAM A,et al. High-performance lithium-sulfur batteries with a self-assembled multiwall carbon nanotube interlayer and a robust electrode-electrolyte interface[J]. ACS Applied Materials & Interfaces,2016,8(1):983-987. [61] EPP V,MA Q,HAMMER E M,et al. Very fast bulk Li ion diffusivity in crystalline Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 as seen using NMR relaxometry[J]. Physical Chemistry Chemical Physics,2015,17(48): 32115-32121. [62] LINDGREN F,XU C,MAIBACH J,et al. A hard X-ray photoelectron spectroscopy study on the solid electrolyte interphase of a lithium 4,5-dicyano-2-(trifluoromethyl) imidazolide based electrolyte for Si-electrodes[J]. Journal of Power Sources,2016,301:105-112. [63] MCCALLA E,ABAKUMOV A M,SAUBANERE M,et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries[J]. Science,2015,350(6267):1516-1521. [64] MANKA D,IVERS-TIFFÉE E. Electro-optical measurements of lithium intercalation/de-intercalation at graphite anode surfaces[J]. Electrochimica Acta,2015,186:642-653. [65] BUELTER H,PETERS F,SCHWENZEL J,et al. Comparison of electron transfer properties of the SEI on graphite composite and metallic lithium electrodes by SECM at OCP[J]. Journal of the Electrochemical Society,2015,162(13):A7024-A7036. [66] CHANG H J,ILOTT A J,TREASE M,et al. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7 Li MRI[J]. J. Am .Chem .Soc.,2015,137(48):15209-15216. [67] LIU J,LI G,FATHY H K. A computationally efficient approach for optimizing lithium-ion battery charging[J]. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme,2016,138(2):21009-21009. [68] BUCHBERGER I,SEIDLMAYER S,POKHAREL A,et al. Aging analysis of graphite/LiNi 1/3 Mn 1/3 Co 1/3 O 2 cells using XRD, PGAA, and AC impedance[J]. Journal of The Electrochemical Society,2015,162(14):A2737-A2746. [69] BIRKENMAIER C,BITZER B,HARZHEIM M,et al. Lithium plating on graphite negative electrodes:Innovative qualitative and quantitative investigation methods[J]. Journal of the Electrochemical Society,2015,162(14):A2646-A2650. [70] KINDERMANN F M,NOEL A,ERHARD S V,et al. Long-term equalization effects in Li-ion batteries due to local state of charge inhomogeneities and their impact on impedance measurements[J]. Electrochimica Acta,2015,185:107-116. [71] HELD M,SENNHAUSER U. Stress-induced ageing of lithium-ion batteries[J]. Chimia,2015,69(12):737-740. [72] NADIMPALLI S P V,SETHURAMAN V A,ABRAHAM D P,et al. Stress evolution in lithium-ion composite electrodes during electrochemical cycling and resulting internal pressures on the cell casing[J]. Journal of the Electrochemical Society,2015,162(14):A2656-A2663. [73] HUEGER E,STAHN J,SCHMIDT H. Neutron reflectometry to measure in situ Li permeation through ultrathin silicon layers and interfaces[J]. Journal of the Electrochemical Society,2015, 162(13):A7104-A7109. [74] KATAYAMA M,MIYAHARA R,WATANABE T,et al. Development of dispersive XAFS system for analysis of time-resolved spatial distribution of electrode reaction[J]. Journal of Synchrotron Radiation,2015,22:1227-1232. [75] BEATTIE S D,LOVERIDGE M J,LAIN M J,et al. Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies[J]. Journal of Power Sources,2016,302:426-430. [76] BERKES B B,JOZWIUK A,SOMMER H,et al. Simultaneous acquisition of differential electrochemical mass spectrometry and infrared spectroscopy data for in situ characterization of gas evolution reactions in lithium-ion batteries[J]. Electrochemistry Communications,2015,60:64-69. [77] FUKUMITSU H,OMORI M,TERADA K,et al. Development of in situ cross-sectional raman imaging of LiCoO 2 cathode for Li-ion battery[J]. Electrochemistry,2015, 83(11):993-996. [78] OTOYAMA M,ITO Y,HAYASHI A,et al. Raman imaging for LiCoO 2 composite positive electrodes in all-solid-state lithium batteries using Li 2 S-P 2 S 5 solid electrolytes[J]. Journal of Power Sources,2016,302:419-425. [79] GAUTHIER M,CARNEY T J ,GRIMAUD A,et al. Electrode-electrolyte interface in Li-ion batteries:Current understanding and new insights[J]. Journal of Physical Chemistry Letters,2015,6(22):4653-4672. [80] ZHOU L,LESKES M,LIU T,et al. Probing dynamic processes in lithium-ion batteries by in situ NMR spectroscopy:Application to Li 1.08 Mn 1.92 O 4 electrodes[J]. Angewandte Chemie-International Edition,2015,54(49):14782-14786. [81] KITZLER T, MAAWAD E,TOEBBENS D M,et al. The electro-chemo-mechanical coupling in lithium alloy electrodes and its origins[J]. Journal of the Electrochemical Society,2015,162(14):A2684-A2691. [82] WU C H,WEATHERUP R S,SALMERON M B. Probing electrode/electrolyte interfaces in situ by X-ray spectroscopies:Old methods, new tricks[J]. Physical Chemistry Chemical Physics,2015, 17(45):30229-30239. [83] PHILIPPE B,HAHLIN M,EDSTROM K,et al. Photoelectron spectroscopy for lithium battery interface studies[J]. Journal of the Electrochemical Society,2016,163(2):A178-A191. [84] BERNARD P,MARTINEZ H,TESSIER C,et al. Role of negative electrode porosity in long-term aging of NMC//graphite Li-ion batteries[J]. Journal of the Electrochemical Society,2015,162(13):A7096-A7103. [85] SUI T,SONG B,DLUHOS J,et al. Nanoscale chemical mapping of Li-ion battery cathode material by FIB-SEM and TOF-SIMS multi-modal microscopy[J]. Nano Energy,2015,17:254-260. [86] BURGOS-MELLADO C,ORCHARD M E,KAZERANI M,et al. Particle-filtering-based estimation of maximum available power state in lithium-ion batteries[J]. Applied Energy,2016,161:349-363. [87] DE VRIES H,THANH T N,OH B. Increasing the cycle life of lithium ion cells by partial state of charge cycling[J]. Microelectronics Reliability,2015,55(11):2247-2253. [88] GE H,HUANG J,ZHANG J,et al. Temperature-adaptive alternating current preheating of lithium-ion batteries with lithium deposition prevention[J]. Journal of the Electrochemical Society,2016,163(2):A290-A299. [89] PANCHAL S,DINCER I,AGELIN-CHAAB M,et al. Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery[J]. International Journal of Thermal Sciences,2016,99:204-212. [90] HEUBNER C,SCHNEIDER M,LAMMEL C,et al. Local heat generation in a single stack lithium ion battery cell[J]. Electrochimica Acta,2015,186:404-412. [91] GALLAGHER K G,TRASK S E,BAUER C,et al. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes[J]. Journal of the Electrochemical Society,2016,163(2):A138-A149. [92] VISHWAKARMA V,WAGHELA C,WEI Z,et al. Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport[J]. Journal of Power Sources,2015,300:123-131. [93] CAMACHO-FORERO L E,SMITH T W,BERTOLINI S,et al. Reactivity at the lithium-metal anode surface of lithium-sulfur batteries[J]. Journal of Physical Chemistry C,2015,119(48):26828-26839. [94] DABROWSKI T,CIACCHI L C. Atomistic modeling of the charge process in lithium/air batteries[J]. Journal of Physical Chemistry C,2015,119(46):25807-25817. [95] LEPLEY N D,HOLZWARTH N A W. Modeling interfaces between solids:Application to Li battery materials[J]. Physical Review B,2015,92(21):doi: http://dx.doi.org/10.1103/PhysRevB.92.214201. [96] ROHRER J,KAGHAZCHI P. Structure sensitivity in the decom position of ethylene carbonate on Si anodes[J]. Chem. Phys. Chem.,2014,15(18):3950-3954. [97] TEBBE J L,HOLDER A M,MUSGRAVE C.B. Mechanisms of LiCoO 2 cathode degradation by reaction with HF and protection by thin oxide coatings[J]. ACS Applied Materials & Interfaces,2015,7(43):24265-24278. [98] SOTO F A,MA Y,DE LA HOZJ M M,et al. Formation and growth mechanisms of solid-electrolyte lnterphase layers in rechargeable batteries[J]. Chemistry of Materials,2015,27(23):7990-8000. [99] USHIROGATA K,SODEYAMA K,FUTERA Z,et al. Near-shore aggregation mechanism of electrolyte decomposition products to explain solid electrolyte interphase formation[J]. Journal of the Electrochemical Society,2015,162(14):A2670-A2678. [100] GRYGIEL K,LEE J S,SAKAUSHI K,et al. Thiazolium poly(ionic liquid)s:Synthesis and application as binder for lithium-ion batteries[J]. ACS Macro. Letters,2015,4(12):1312-1316. |
[1] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[2] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[3] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
[4] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. |
[5] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
[6] | Jianglong DU, Yiting LIN, Wenqi YANG, Cheng LIAN, Honglai LIU. Application of simulation in thermal safety design of lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 866-877. |
[7] | Kuining LI, Cheng HE, Yi XIE, Bin LIU, Shasha DENG. Thermal management of a 48 V pouch lithium-ion battery pack based on high rate discharge condition [J]. Energy Storage Science and Technology, 2021, 10(2): 679-688. |
[8] | Zhong XU, Jing HOU, Jun LI, Enhui WU, Ping HUANG, Yalan TANG. Properties of different particle-sized activated carbon/myristic acid composite phase change material [J]. Energy Storage Science and Technology, 2021, 10(1): 177-189. |
[9] | Jianjun WANG, Yuxia SHEN, Yu ZHANG, Tuodi ZHANG, Yong LI, Yi WANG. T-history method and its application in the determination of thermophysical properties of phase change materials [J]. Energy Storage Science and Technology, 2021, 10(1): 280-286. |
[10] | Sai WANG, Zhigao SUN, Juan LI, Cuimin LI. Preparation and properties of lauric acid/tetradecanol/SiO2 shape-stabilized phase change materials [J]. Energy Storage Science and Technology, 2020, 9(6): 1768-1774. |
[11] | ZHOU Huilin, QIU Yan. Heat storage characteristic and structure optimum inrectangular unit [J]. Energy Storage Science and Technology, 2020, 9(4): 1082-1090. |
[12] | LIU Lihui, MO Yajing, SUN Xiaoqin, LI Jie, LI Chuanchang, XIE Baoshan. Thermal behavior of the nanoenhanced phase change materials [J]. Energy Storage Science and Technology, 2020, 9(4): 1105-1112. |
[13] | JIN Guang, ZHAO Wenxiu, ZHAO Jun, GUO Shaopeng. Development and research status on the technology of direct contact thermal energy storage [J]. Energy Storage Science and Technology, 2019, 8(3): 477-487. |
[14] | MEHVISH Tariq, CHENG Xiaomin, LI yuanyuan, HUANG Yi, LI Ge, WANG Xiuli, ZHU Shilei, WAQAR Khan. Influence of carbon nanotubes and nano-alumina on the thermal performance of nitrate phase change materials for thermal storage [J]. Energy Storage Science and Technology, 2018, 7(S1): 47-53. |
[15] | WANG Hanqing, ZHAO Yue. Application of energy storage enclosure with phase change materials in building energy saving [J]. Energy Storage Science and Technology, 2018, 7(S1): 75-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||