Energy Storage Science and Technology ›› 2016, Vol. 5 ›› Issue (6): 788-799.doi: 10.12028/j.issn.2095-4239.2016.0041
Previous Articles Next Articles
#br# SONG Weili, FAN Lizhen
Received:
2016-07-06
Revised:
2016-08-01
Online:
2016-11-01
Published:
2016-11-01
SONG Weili, FAN Lizhen. Advances in supercapacitors: From electrodes materials to energy storage devices[J]. Energy Storage Science and Technology, 2016, 5(6): 788-799.
[1] 阮殿波,郑超,陈雪丹,等. 超级电容器百篇论文点评(2015.8.1— RUAN Dianbo,ZHENG Chao,CHEN Xuedan,et al. Review of selected 100 recent papers for supercapacitors(Aug. 1, 2015 to Oct. 31, 2015)[J]. Energy Storage Science and Technology,2016,5(1):31-43. [2] SIMON P,GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials,2008,7(11):845-854. [3] CHOI N S,CHEN Z H,FREUNBERGER S A,et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie International Edition,2012,51(40):9994-10024. [4] ZHAI Y P,DOU Y Q,ZHAO D Y,et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials,2011,23(42):4828-4850. [5] LI L,WU Z,YUAN S,ZHANG X B. Advances and challenges for flexible energy storage and conversion devices and systems[J]. Energy & Environmental Science,2014,7:2101-2122.
[6] ZHANG L L,ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009,38(9):2520-2531. [7] YU Z,TETARD L,ZHAI L,THOMAS J. Supercapacitor electrode materials:Nanostructures from 0 to 3 dimensions[J]. Energy & Environmental Science,2015,8:702-730.
[8] GUO C X,LI C M. A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance[J]. Energy & Environmental Science,2011,4(11):4504-4507. [9] LIU C,LI F,MA L P,CHENG H M. Advanced materials for energy storage[J]. Advanced Materials,2010,22(8):E28-E62. [10] CHMIOLA J,YUSHIN G,GOGOTSI Y,et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science,2006,313(5794):1760-1763. [11] WANG D W,LI F,LIU M,et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angewandte Chemie International Edition,2008,120(2):379-382. [12] INAGAKI M,KONNO H,TANAIKE O. Carbon materials for electrochemical capacitors[J]. Journal of Power Sources,2010,195(24):7880-7903. [13] PANDOLFO A G,HOLLENKAMP A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources,2006,157(1):11-27. [14] GUO Y P,QI J R,JIANG Y Q,et al. Performance of electrical double layer capacitors with porous carbons derived from rice husk[J]. Materials Chemistry and Physics,2003,80(3):704-709. [15] SUBRAMANIAN V,LUO C,STEPHAN A M,et al. Supercapacitors from activated carbon derived from banana fibers[J]. The Journal of Physical Chemistry C,2007,111(20):7527-7531. [16] KALPANA D,CHO S H,LEE S B,et al. Recycled waste paper—A new source of raw material for electric double-layer capacitors[J]. Journal of Power Sources,2009,190(2):587-591. [17] ZHAO L,FAN L Z,ZHOU M Q,et al. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors[J]. Advanced Materials,2010,22(45):5202-5206. [18] SONG K,SONG W L,FAN L Z. Scalable fabrication of exceptional 3D carbon networks for supercapacitors[J]. Journal of Materials Chemistry A,2015,3(31):16104-16111. [19] FAN L Z,CHEN T T,SONG W L,et al. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors[J]. Scientific Reports,2015,5:15388-15398 [20] LIANG Y R,WU D C,FU R W. Carbon microfibers with hierarchical porous structure from electrospun fiber-like natural biopolymer[J]. Scientific Reports,2013,3:1119-1123. [21] QIAN W J,SUN F X,XU Y H,et al. Human hair-derived carbon flakes for electrochemical supercapacitors[J]. Energy & Environmental Science,2014,7:379-386. [22] LILLO-RÓDENAS M A,JUAN-JUAN J,CAZORLA-AMORÓS D,LINARES-SOLANO A. About reactions occurring during chemical activation with hydroxides[J]. Carbon,2004,42(7):1371-1375. [23] FUTABA D N,HATA K,YAMADA T,et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature Materials,2006,5(12):987-994. [24] STOLLER M D,PARK S,ZHU Y,et al. Graphene-based ultracapacitors[J]. Nano Letters,2008,8(10):3498-3502. [25] ZHANG L L,ZHAO X,JI H,et al. Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon[J]. Energy & Environmental Science,2012,5(11):9618-9625. [26] WANG D W,LI F,YIN L C,et al. Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions[J]. Chemistry-A European Journal,2012,18(17):5345-5351. [27] KIM T,JUNG G,YOO S,et al. Activated graphene-based carbons as supercapacitor electrodes with macro-and mesopores[J]. ACS Nano,2013,7(8):6899-6905. [28] FAN L Z,LIU J L,UD-DIN R,et al. The effect of reduction time on the surface functional groups and supercapacitive performance of graphene nanosheets[J]. Carbon,2012,50(10):3724-3730. [29] XU Y X,LIN Z Y,HUANG X Q,et al. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films[J]. ACS Nano,2013,7(5):4042-4049. [30] XU Y X,LIN Z Y,HUANG X Q,et al. Functionalized graphene hydrogel-based high-performance supercapacitors[J]. Advanced Materials,2013,25(40):5779-5784. [31] XU Y X,LIN Z Y,ZHONG X,et al. Holey graphene frameworks for highly efficient capacitive energy storage[J]. Nature Communications,2014,5:4554-4561. [32] ZHOU Y K,XU X,SHAN B,et al. Tuning and understanding the supercapacitance of heteroatom-doped graphene[J]. Energy Storage Materials,2015,1:103-111. [33] WANG G P,ZHANG L,ZHANG J J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews,2012,41(2):797-828. [34] JOW J J,LAI H H,CHEN H R,et al. Effect of hydrothermal treatment on the performance of RuO2-Ta2O5/Ti electrodes for use in supercapacitors[J]. Electrochimica Acta,2010,55(8):2793-2798. [35] SHINOMIYA T,GUPTA V,MIURA N. Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide[J]. Electrochimica Acta,2006,51(21):4412-4419. [36] LIU J L,FAN L Z,QU X. Low temperature hydrothermal synthesis of nano-sized manganese oxide for supercapacitors[J]. Electrochimica Acta,2012,66:302-305. [37] GAO H,XIAO F,CHING C B,DUAN H. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2[J]. ACS Applied Materials & Interfaces,2012,4(5):2801-2810. [38] NARDECCHIA S,CARRIAZO D,FERRER M L,et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene:Synthesis and applications[J]. Chemical Society Reviews,2013,42(2):794-830. [39] XUE M Q,LI F W,ZHU J,et al. Structure-based enhanced capacitance:In situ growth of highly ordered polyaniline nanorods on reduced graphene oxide patterns[J]. Advanced Functional Materials,2012,22(6):1284-1290. [40] TANG Z,TANG C H,GONG H. A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes[J]. Advanced Functional Materials,2012,22(6):1272-1278. [41] [42] LI M,WEE B H,HONG J D. High performance flexible supercapacitor electrodes composed of ultralarge graphene sheets and vanadium dioxide[J]. Advanced Energy Materials,2015,5:1401890. [43] TANG H J,WANG J Y,YIN H J,et al. Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes[J]. Advanced Materials,2015,27(6):1117-1123. [44] QIE L,CHEN W M,XU H H,et al. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors[J]. Energy & Environmental Science,2013,6(8):2497-2504. [45] ZHANG H, [46] ZHANG H, [47] WANG H L,CASALONGUE H S,LIANG Y Y,DAI H J. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials[J]. Journal of the American Chemical Society,2010,132(21):7472-7477. [48] LIAO Q L,LI N,JIN S X,et al. All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene[J]. ACS Nano,2015,9(5):5310-5317. [49] Wang Y G,Li H Q,Xia Y Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance[J]. Advanced Materials,2006,18(19):2619-2623. [50] FAN L Z,HU Y S,MAIER J,et al. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support[J]. Advanced Functional Materials,2007,17(16):3083-3087. [51] LIN T Q,CHEN I W,LIU F X,et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science,2015,350(6267):1508-1513. [52] NAGUIB M,MOCHALIN V N,BARSOUM M W,GOGOTSI Y. 25th anniversary article:MXenes:A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. [53] WANG X,CHEN Y,SCHMIDT O G,YAN C. Engineered nanomembranes for smart energy storage devices[J]. Chemical Society Reviews,2016,45:1308-1330. [54] BEIDAGHI M,GOGOTSI Y. Capacitive energy storage in micro-scale devices:Recent advances in design and fabrication of micro-supercapacitors[J]. Energy & Environmental Science,2014,7:867-884.
[55] LU X H,YU M H,WANG G M,et al . Flexible solid-state supercapacitors:Design, fabrication and applications[J]. Energy & Environmental Science,2014,7(7):2160-2181. [56] CAI W H,LAI T,DAI W L,YE J S. A facile approach to fabricate flexible all-solid-state supercapacitors based on MnFe2O4/graphene hybrids[J]. Journal of Power Sources,2014,255:170-178. [57] SHAO Y L,WANG H Z,ZHANG Q H,LI Y G. High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes[J]. Journal of Materials Chemistry C,2013,1(6):1245-1251. [58] GAO S,SUN Y F,LEI F C,et al. Ultrahigh energy density realized by a single-layer β-Co(OH)2 all-solid-state asymmetric supercapacitor[J]. Angewandte Chemie International Edition,2014,53:12789-12793. [59] MA G F,LI J J,SUN K J,et al. High performance solid-state supercapacitor with PVA-KOH-K3[Fe(CN)6] gel polymer as electrolyte and separator[J]. Journal of Power Sources,2014,256:281-287. [60] MENG C Z,LIU C H,CHEN L Z,et al. Highly flexible and all-solid-state paperlike polymer supercapacitors[J]. Nano Letters,2010,10(10):4025-4031. [61] VIEIRA D F,AVELLANEDA C O,PAWLICKA A. Conductivity study of a gelatin-based polymer electrolyte[J]. Electrochimica Acta,2007,53(4):1404-1408. [62] LEE K T,WU N L. Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte[J]. Journal of Power Sources,2008,179(1):430-434. [63] SARICILAR S,ANTIOHOS D,SHU K,et al. High strain stretchable solid electrolytes[J]. Electrochemistry Communications,2013,32:47-50. [64] YANG C C,HSU S T,CHIEN W C. All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes[J]. Journal of Power Sources,2005,152:303-310. [65] UKSEL R,SARIOBA Z,CIRPAN A,et al. Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes[J]. ACS Applied Materials & Interfaces,2014,6(17):15434-15439. [66] SONG W L,LI X G,FAN L Z. Biomass derivative/graphene aerogels for binder-free supercapacitors[J]. Energy Storage Materials,2016(3)113-122. [67] GUI Z,ZHU H,GILLETTE E,et al. Natural cellulose fiber as substrate for supercapacitor[J]. ACS Nano,2013,7(7):6037-6046. [68] LE V T,KIM H,GHOSH A,et al. Coaxial fiber supercapacitor using all-carbon material electrodes[J]. ACS Nano,2013,7(7):5940-5947. [69] XU Z,GAO C. Graphene in macroscopic order:Liquid crystals and wet-spun fibers[J]. Accounts of Chemical Research,2014,47(4):1267-1276. [70] HUANG Y,HU H,HUANG Y,et al. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles[J]. ACS Nano,2015,9(5):4766-4775. [71] XU Z,GAO C. Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nature Communications,2011,2:571. [72] KOU L,HUANG T Q,ZHENG B N,et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics[J]. Nature Communications,2014,5:3754-3763. [73] ZHENG B N,HUANG T Q,KOU L,et al. Graphene fiber-based asymmetric micro-supercapacitors[J]. Journal of Materials Chemistry A,2014,2(25):9736-9743. [74] GOPALSAMY K,XU Z,ZHENG B N,et al. Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors[J]. Nanoscale,2014,6(15):8595-8600. [75] REN J,BAI W Y,GUAN G Z,et al. Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber[J]. Advanced Materials,2013,25(41):5965-5970. [76] CHEN X L,QIU L B,REN J,et al. Novel electric double-layer capacitor with a coaxial fiber structure[J]. Advanced Materials,2013,25(44):6436-6441. [77] YU D S,GOH K L,WANG H,et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage[J]. Nature Nanotechnology,2014,9(7):555-562. [78] MENG Q H,WU H P,MENG Y N,et al. High-performance all-carbon yarn micro-supercapacitor for an integrated energy system[J]. Advanced Materials,2014,26(24):4100-4106. [79] CHOI C,LEE J A,CHOI A Y,et al. Flexible supercapacitor made of carbon nanotube yarn with internal pores[J]. Advanced Materials,2014,26(13):2059-2065. [80] HUANG Y,HUANG Y,ZHU M S,et al. Magnetic-assisted, self-healable, yarn-based supercapacitor[J]. ACS Nano,2015,9(6):6242-6251. [81] LI M,TANG Z,LENG M,XUE J M. Flexible solid-state supercapacitor based on graphene-based hybrid films[J]. Advanced Functional Materials,2014,24(47):7495-7502. [82] WENG Z,SU Y,WANG D W,et al. Graphene-cellulose paper flexible supercapacitors[J]. Advanced Energy Materials,2011,1(5):917-922. [83] CHEN Z P,REN W C,GAO L B,et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials,2011,10(6):424-428. [84] HE Y M,CHEN W J,LI X D,et al. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes[J]. ACS Nano,2012,7(1):174-182. [85] NARDECCHIA S,CARRIAZO D,FERRER M L,et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene:Synthesis and applications[J]. Chemical Society Reviews,2013,42(2):794-830. [86] LIU T T,SONG W L,FAN L Z. Alcohol-dependent environments for fabricating graphene aerogels toward supercapacitors[J]. Electrochimica Acta,2015,173:1-6. [87] JU H F,SONG W L,FAN L Z. Rational design of graphene/porous carbon aerogels for high-performance flexible all-solid-state supercapacitors[J]. Journal of Materials Chemistry A,2014,2(28):10895-10903. [88] SONG W L,SONG K,FAN L Z. A versatile strategy toward binary three-dimensional architectures based on engineering graphene aerogels with porous carbon fabrics for supercapacitors[J]. ACS Applied Materials & Interfaces,2015,7(7):4257-4264. [89] XIA X H,ZHANG Y Q,CHAO D L,et al. Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance[J]. Energy & Environmental Science,2015,8:1559-1568.
[90] WANG G M,WANG H Y,LU X H,et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability[J]. Advanced Materials,2014,26(17):2676-2682. [91] YANG P H,DING Y,LIN Z Y,et al. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2[D1] nanowires and Fe2O3 nanotubes[J]. Nano Letters,2014,14(2):731-736. [92] YANG Y,FEI H L,RUAN G D,et al. Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices[J]. Advanced Materials,2014,26(48):8163-8168. [93] ANOTHUMAKKOOL B,SONI R,BHANGE S,KURUNGOT S. Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor[J]. Energy & Environmental Science,2015,8:1339-1347.
[94] XUE M Q,LI F W,ZHU J,et al. Structure-based enhanced capacitance:In situ growth of highly ordered polyaniline nanorods on reduced graphene oxide patterns[J]. Advanced Functional Materials,2012,22(6):1284-1290. [95] EL-KADY M F,KANER R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nature Communications,2013,4:1475-1483. [96] WU Z S,PARVEZ K,FENG X L,MÜLLEN K. Graphene-based in-plane micro-supercapacitors with high power and energy densities[J]. Nature Communications,2013,4:2487-2494. [97] ZHANG Z T,CHEN X L,CHEN P N,et al. Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format[J]. Advanced Materials,2014,26(3):466-470. [98] XU X B,LI S H,ZHANG H,et al. A power pack based on organometallic perovskite solar cell and supercapacitor[J]. ACS Nano,2015,9(2):1782-1787. [99] RAMADOSS A,SARAVANAKUMAR B,LEE S W,et al. Piezoelectric-driven self-charging supercapacitor power cell[J]. ACS Nano,2015,9(4):4337-4345. [100] PU X,LI L X,LIU M M,et al. Wearable Self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators[J]. Advanced Materials,2016,28(1):98-105. [101] AHN Y K,KIM B,KO J,et al. All solid state flexible supercapacitors operating at 4 V with a cross-linked polymer-ionic liquid electrolyte[J]. Journal of Materials Chemistry A,2016,4:4386-4391.
|
[1] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[2] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[3] | Linhan XIE, Wanzhong LI, Qianqian ZHANG, Gaoping CAO, Jingyi QIU, Hai MING, Wei FENG. Research advances in plant-power generation technology [J]. Energy Storage Science and Technology, 2022, 11(2): 442-466. |
[4] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[5] | Feng HE, Jingjing ZHANG, Yijun CHEN, Jian ZHANG, Deli WANG. Recent progress on carbon-based catalysts for electrochemical synthesis of H2O2 via oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1963-1976. |
[6] | Shuai CHEN, Ling CHEN, Hao JIANG. Nitrogen-doped amorphous vanadium oxide nanosheet arrays for rapid-charging quasi-solid asymmetric supercapacitors [J]. Energy Storage Science and Technology, 2021, 10(3): 945-951. |
[7] | Rixin LAI, Chuanjian JIANG, Lin LIU, Wenfeng ZHANG, Yu XIANG, Hai MING, Hao ZHANG, Gaoping CAO, Yun DU. Research progress of the regulation of nitrogen doping of graphene and the influence mechanism of supercapacitor capacitive performance [J]. Energy Storage Science and Technology, 2020, 9(6): 1657-1667. |
[8] | QU Chenying, HOU Zhaoxia, WANG Xiaohui, WANG Jian, WANG Kai, LI Siyao. Research progress of gel polymer electrolytes on solid supercapacitors [J]. Energy Storage Science and Technology, 2020, 9(3): 776-783. |
[9] | ZHANG Jinliang, KANG Danmiao, LIU Junqing, SU Zhijiang, LIANG Wenbin. Electrochemical performance of water soluble pitch-based porous carbons [J]. Energy Storage Science and Technology, 2020, 9(3): 743-750. |
[10] | TANG Lianghui, HE Ling, YU Xuewen, RUAN Dianbo, HE Xiaoyue. Thermal simulation analysis of supercapacitors based on fluent under multiple operating conditions [J]. Energy Storage Science and Technology, 2019, 8(5): 911-914. |
[11] | XU Guizhi, HU Xiao, JIN Yi, YANG Cenyu, LI Chuan, DING Yulong. Simulation modeling and analysis of a high temperature phase change heat storage and exchange device [J]. Energy Storage Science and Technology, 2019, 8(2): 338-346. |
[12] | LI Wei, HOU Zhaoxia, LI Jianjun, BO Daming. Preparation methods and progress of manganese dioxide/graphene based composites in supercapacitors [J]. Energy Storage Science and Technology, 2019, 8(2): 248-259. |
[13] | WANG Jiahe, YANG Xiaowei. Progress reports and prospect of stretchable electrochemical energy storage devices [J]. Energy Storage Science and Technology, 2018, 7(2): 157-166. |
[14] | ZHENG Chao, LI Linyan, CHEN Xuedan, YU Xuewen, GU Yingzhan, WU Yihuan, DING Sheng, PAN Guolin, ZHOU Zhou, LIU Qiuxiang, CHEN Kuan, YUAN Jun, YANG Bin, QIAO Zhijun, FU Guansheng, RUAN Dianbo. Review of selected 100 recent papers for supercapacitors(Jul. 1,2017 to Dec. 15,2017) [J]. Energy Storage Science and Technology, 2018, 7(1): 20-. |
[15] | LI Chen, ZHANG Xiong, WANG Kai, SUN Xianzhong, MA Yanwwei. Supercapacitive application of carbon materials produced by CO2 conversion [J]. Energy Storage Science and Technology, 2017, 6(5): 1041-1049. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||