Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (5): 926-957.doi: 10.12028/j.issn.2095-4239.2018.0162
XU Jieru, LING Shigang, WANG Shaofei, PAN Du, NIE Kaihui, ZHANG Hua, QIU Jiliang, LU Jiaze, LI Hong
Received:
2018-08-16
Revised:
2018-08-23
Online:
2018-09-01
Published:
2018-09-01
Contact:
10.12028/j.issn.2095-4239.2018.0162
CLC Number:
XU Jieru, LING Shigang, WANG Shaofei, PAN Du, NIE Kaihui, ZHANG Hua, QIU Jiliang, LU Jiaze, LI Hong. Conductivity test and analysis methods for research of lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(5): 926-957.
[1] MAIER J. Physical chemistry of ionic materials:Ions and electrons in solids[M]. New Jersey:John Wiley & Sons, 2004. [2] AGRAWAL R, GUPTA R. Superionic solid:Composite electrolyte phase-An overview[J]. Journal of Materials Science, 1999, 34(6):1131-1162. [3] 郑浩, 高健, 王少飞, 等. 锂电池基础科学问题(VI)——离子在固体中的输运[J]. 储能科学与技术, 2013, 2(6):620-635. ZHENG Hao, GAO Jian, WANG Shaofei, et al. Fundamental scientific aspects of lithium batteries (VI)-Ionic transport in solids[J]. Energy Storage Science and Technology, 2013, 2(6):620-635. [4] 王少飞. 锂电池固体电解质材料的研究[D]. 北京:中国科学院物理研究所, 2014. WANG S F. Investigation on solid state electrolyte materials for lithium battery[D]. Beijing:Institute of Physics, Chinese Academy of Sciences, 2014. [5] 高健. 若干锂离子固体电解质中的离子输运问题研究[D]. 北京:中国科学院物理研究所, 2015. GAO J. Investigation on ion transport in several lithium ion solid electrolytes[D]. Beijing:Institute of Physics, Chinese Academy of Sciences, 2015. [6] 杨勇. 固态电化学[M]. 北京:化学工业出版社, 2016. YANG Y. Solid state electrochemistry[M]. Beijing:Chemistry Industry Press, 2016. [7] WANG S, YAN M, LI Y, et al. Separating electronic and ionic conductivity in mix-conducting layered lithium transition-metal oxides[J]. Journal of Power Sources, 2018, 393:75-82. [8] 张恒. 含双(氟磺酰)亚胺阴离子的纯固态聚合物电解质的制备、表征及性质[D]. 武汉:华中科技大学, 2015. ZHANG H. Solid polymer electrolytes based on bis(fluorosulfonyl) imide anion:Synthesis, characterization, and properties[D]. Wuhan:Huazhong University of Science & Technology, 2015. [9] 应风晔. Ba0.5Sr0.5Co0.8Fe0.2O3-δ混合导体导电性能研究[D]. 上海:上海大学, 2007. YING F Y. Research on conductivity of mixed Conductors-Ba0.5Sr0.5Co0.8Fe0.2O3-δ[D]. Shanghai:Shanghai University, 2007. [10] BUSCHMANN H, DOLLE J, BERENDTS S, et al. Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12"[J]. Phys. Chem. Chem. Phys., 2011, 13(43):19378-19392. [11] 凌仕刚, 许洁茹, 李泓. 锂电池研究中的EIS实验测量和分析方法[J]. 储能科学与技术, 2018, 7(4):732-750. LING S G, XU J R, LI H. Experimental measurement and analysis methods of electrochemical impedance spectroscopy for lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(4):732-750. [12] WESTPHAL B G, MAINUSCH N, MEYER C, et al. Influence of high intensive dry mixing and calendering on relative electrode resistivity determined via an advanced two point approach[J]. Journal of Energy Storage, 2017, 11:76-85. [13] BARSOUKOV E, MACDONALD J R. Impedance spectroscopy theory, experiment, and applications[M]. 2nd Ed. USA:John Wiley & Sons, 2005. [14] 曹楚南, 张鉴清. 交流阻抗法导论[M]. 北京:科学出版社, 2002. CAO C N, ZHANG J Q. An introduction to electrochemistry impedance spectroscopy[M]. Beijing:Science Press, 2002. [15] HEBB M H. Electrical conductivity of silver sulfide[J]. The Journal of Chemical Physics, 1952, 20:185-190. [16] WAGNER C. Galvanische zellen mit festen elektrolyten gemischter stromleitung[J]. Zeitschrift fuer Elektrochemie und Angewandte Physikalische Chemie, 1956, 60:4-7. [17] FRENNING G, STR MME M. Theoretical derivation of the isothermal transient ionic current in an ion conductor:Migration, diffusion, and space-charge effects[J]. Journal of Applied Physics, 2001, 90(11):5570-5575. [18] WATANABE M, RIKUKAWA M, SANUI K, et al. Evaluation of ionic mobility and transference number in a polymeric solid electrolyte by isothermal transient ionic current method[J]. Journal of Applied Physics, 1985, 58(2):736-740. [19] 郑浩. 全固态锂空气电池和新型薄膜固态电解质研究[D]. 北京:中国科学院物理研究所, 2015. ZHENG H. Studies on the solid state Lithium air battery and a new thin film solid state electrolyte[D]. Beijing:Institute of Physics, Chinese Academy of Sciences, 2015. [20] HAILE S M, WEST D L, CAMPBELL J. The role of microstructure and processing on the proton conducting properties of Gadolinium-doped barium cerate[J]. Journal of Materials Research, 1998, 13(6):1576-1595. [21] AGRAWAL R C, KATHAL K, GUPTA R K. Estimation of energies of Ag+ ion formation and migration using transient ionic current (TIC) technique[J]. Solid State Ionics, 1994, 74:137-140. [22] AMIN R, MAIER J, BALAYA P, et al. Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique[J]. Solid State Ionics, 2008, 179(27/32):1683-1687. [23] ZUGMANN S, FLEISCHMANN M, AMERELLER M, et al. Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study[J]. Electrochimica Acta, 2011, 56(11):3926-3933. [24] ABRAHAM K M, JIANG Z, CARROLL B. Highly conductive PEO-like polymer electrolytes[J]. Chemistry of Materials, 1997, 9:1978-1988. [25] NIEDZICKI L, KASPRZYK M, KUZIAK K. Liquid electrolytes based on new lithium conductive imidazole salts[J]. Journal of Power Sources, 2011, 196(3):1386-1391. [26] SAKUDA A, HAYASHI A, TATSUMISAGO M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery[J]. Scientific Reports, 2013(3):2261-2265. [27] 程琥. 锂二次电池聚合物电解质的制备、表征及其相关界面性质研究[D]. 厦门:厦门大学, 2007. CHENG H. Synthesis, characterization and their interfacial properties of polymer electrolytes for secondary lithium batteries[D]. Xiamen:Xiamen University, 2007. [28] KIM S, HIRAYAMA M, TAMINATO S. Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte[J]. Dalton Transactions, 2013, 42(36):13112-13117. [29] LOBE S, DELLEN C, FINSTERBUSCH M. Radio frequency magnetron sputtering of Li7La3Z2O12 thin films for solid-state batteries[J]. Journal of Power Sources, 2016, 307:684-689. [30] SU Y, FALGENHAUER J, POLITY A. LiPON thin films with high nitrogen content for application in lithium batteries and electrochromic devices prepared by RF magnetron sputtering[J]. Solid State Ionics, 2015, 282:63-69. [31] HUGGINS R A. Simple method to determine electronic and ionic conductivity of the components in mixed conductors-A review[J]. Ionics, 2002(8):300-313. [32] UHLMANN C, BRAUN P, ILLIG J, et al. Interface and grain boundary resistance of a lithium lanthanum titanate (Li3-xLa2/3-xTiO3, LLTO) solid electrolyte[J]. Journal of Power Sources, 2016, 307:578-586. [33] 张杰男. 电压钴酸锂的失效分析与改性研究[D]. 北京:中国科学院物理研究所, 2018. ZHANG J N. Failure analysis and modification research on high voltage LiCoO2[D]. Beijing:Institute of Physics, Chinese Academy of Sciences, 2018. [34] IRVINE J T, SINCLAIR D C, WEST A R. Electroceramics:characterization by impedance spectroscopy[J]. Advanced Materials, 1990, 3(2):132-138. [35] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9):682-686. [36] LIN D, LIU W, LIU Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in Poly(ethylene oxide)[J]. Nano Letters, 2015, 16(1):459-465. [37] AMIN R, BALAYA P, MAIER J. Anisotropy of electronic and ionic transport in LiFePO4 single crystals[J]. Electrochemical and Solid-State Letters, 2007, 10(1):A13-A16. [38] AMIN R, CHIANG Y M. Characterization of electronic and ionic transport in Li1-xNi0.33Mn0.33Co0.33O2 (NMC333) and Li1-xNi0.50Mn0.20Co0.30O2 (NMC523) as a function of Li content[J]. Journal of the Electrochemical Society, 2016,163(8):A1512-A1517. [39] PATEL R L, PARK J, LIANG X H. Ionic and electronic conductivities of atomic layer deposition thin film coated lithium ion battery cathode particles[J]. RSC Advances, 2016, 6:98768-98776. |
[1] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[2] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[3] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[4] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[5] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[6] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
[7] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[8] | Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021) [J]. Energy Storage Science and Technology, 2022, 11(1): 297-312. |
[9] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[10] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wangsong KE, Wei CHEN. Analysis of the development trend and the innovation ability of an all-solid-state lithium battery technology [J]. Energy Storage Science and Technology, 2022, 11(1): 359-369. |
[11] | Yue SU, Xuhua LIU, Fanglei ZENG, Yurong REN, Bencai LIN. Preparation and properties of polyvinylidene fluoride/polyvinylidene fluoride sulfonate lithium/lithium salt composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(6): 2069-2076. |
[12] | Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. |
[13] | Hongxiang JI, Zhou JIN, Mengyu TIAN, Yida WU, Yuanjie ZHAN, Feng TIAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2021 to Sept. 30, 2021) [J]. Energy Storage Science and Technology, 2021, 10(6): 2411-2427. |
[14] | Bohui LU, Zhicheng SHI, Yongxue ZHANG, Hongyu ZHAO, Zixi WANG. Investigation of the charging and discharging performance of paraffin/nano-Fe3O4 composite phase change material in a shell and tube thermal energy storage unit [J]. Energy Storage Science and Technology, 2021, 10(5): 1709-1719. |
[15] | Feng TIAN, Hongxiang JI, Mengyu TIAN, Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Yida WU, Yuanjie ZHAN, Zhou JIN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2021 to Jul. 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(5): 1854-1868. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||