Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (2): 248-259.doi: 10.12028/j.issn.2095-4239.2018.0220
Previous Articles Next Articles
LI Wei, HOU Zhaoxia, LI Jianjun, BO Daming
Received:
2018-11-05
Revised:
2018-12-25
Online:
2019-03-01
Published:
2019-03-01
CLC Number:
LI Wei, HOU Zhaoxia, LI Jianjun, BO Daming. Preparation methods and progress of manganese dioxide/graphene based composites in supercapacitors[J]. Energy Storage Science and Technology, 2019, 8(2): 248-259.
[1] WANG K, WU H P, MENG Y N, et al. Conducting polymer nanowire arrays for high performance supercapacitors[J]. Small, 2014, 10(1):14-31. [2] LIU W W, LI X, ZHU M H, et al. High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel[J]. Journal of Power Sources, 2015, 282:179-186. [3] WANG Q H, JIAO L F, DU H M, et al. Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors[J]. Journal of Power Sources, 2014, 245:101-106. [4] MA W J, CHEN S H, YANG S Y, et al. Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors[J]. Journal of Power Sources, 2016, 306:481-488. [5] ZHANG Y B, DING M J, SONG C J, et al. Selective catalytic reduction of NO with NH3 over MnO2/PDOPA@CNT catalysts prepared by poly(dopamine) functionalization[J]. New Journal of Chemistry, 2018, 42(14):11273-11275. [6] LI X, DONG F, XU N, et al. Co3O4/MnO2/hierarchically porous carbon as superior bifunctional electrodes for liquid and all-solid-state rechargeable zinc-air batteries[J]. ACS Appl. Mater. Interfaces, 2018, 10(18):15591-15601. [7] YAO B, ZHANG J, KOU T Y, et al. Paper-based electrodes for flexible energy storage devices[J]. Advanced Science, 2017, 4(7):doi:10.1002/advs.201700107. [8] HUI N, CHAI F L, LIN P P, et al. Electrodeposited conducting polyaniline nanowire arrays aligned on carbon nanotubes network for high performance supercapacitors and sensors[J]. Electrochim. Acta, 2016, 199:234-241. [9] GARAKANI M A, ABOUALI S, CUI J, et al. In-situ TEM study of lithiation into PPy coated α-MnO2/graphene foam freestanding electrode[J]. Materials Chemistry Frontiers, 2018, 2(8):1481-1488. [10] IGUCHI H, MIYAHARA K, HIGASHI C, et al. Preparation of uncurled and planar multilayered graphene using polythiophene derivatives via liquid-phase exfoliation of graphite[J]. FlatChem, 2018, 8:31-39. [11] BAG S, RETNA RAJ C. Hierarchical three-dimensional mesoporous MnO2 nanostructures for high performance aqueous asymmetric supercapacitors[J]. Mater. Chem., 2016, 4(2):587-595. [12] WANG K, YANG J, ZHU J, et al. General solution-processed formation of porous transition-metal oxides on exfoliated molybdenum disulfides for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(22):11236-11245. [13] RAMESH S, KARUPPASAMY K, MSOLLI S, et al. Nanocrystalline structured of NiO/MnO2@nitrogen-doped graphene oxide hybrid nanocomposite for high performance supercapacitor[J]. New Journal of Chemistry, 2017, 41(24):15517-15527. [14] ZHANG Q Z, ZHANG D, MIAO Z C, et al. Research progress in MnO2-carbon based supercapacitor electrode materials[J]. Small, 2018, 14(24):doi:10.1002/smll.201702883. [15] SUN S Q, JIANG G H, LIU Y K, et al. Facile preparation of hybrid films based on MnO2 and reduced graphene oxide for a flexible supercapacitor[J]. Journal of Electronic Materials, 2018, 47(10):5993-5999. [16] GAO G, ZHANG Q, CHENG X B, et al. Synthesis of three-dimensional rare-earth ions doped CNTs-GO-Fe3O4 hybrid structures using one-pot hydrothermal method[J]. Journal of Alloys & Compounds, 2015, 649:82-88. [17] SUN H B, GU H Z, CHEN Y. Preparation and electrochemical properties of graphene/MnO2 nanocomposites for supercapacitors[J]. Key Engineering Materials, 2018, 768:102-108. [18] ZHANG L F, DU S Q, LIU Y, et al. Manganese dioxide nanoflakes anchored on reduced graphene oxide with superior electrochemical performance for supercapacitorss[J]. IET Micro & Nano Letters, 2017, 12(3):147-150. [19] MENG X Y, LU L, SUN C W. Green synthesis of three-dimensional MnO2/graphene hydrogel composites as a high-performance electrode material for supercapacitors[J]. Mater. Interfaces, 2018, 10(19):16474-16481. [20] ZHAO X, WANG H, ZHAI G, et al. Facile assembly of 3D porous reduced graphene oxide/ultrathin MnO2 nanosheets-S aerogels as efficient polysulfide adsorption sites for high-performance lithium-sulfur batteries[J]. Chemistry, 2017, 23(29):7037-7045. [21] XU J, CHEN Y, DONG Z, et al. Facile synthesis of the Ti3+-TiO2-RGO compound with controllable visible light photocatalytic performance:GO regulating lattice defects[J]. Journal of Materials Science, 2018, 53(18):12770-12780. [22] LIU C L, GUI D Y, LIU J H. Process dependent graphene-wrapped plate-like MnO2 nanospheres for high performance supercapacitor[J]. Chemical Physics Letters, 2014, 614:123-128. [23] ZHAO X, TANG J, YU F, et al. Preparation of graphene nanoplatelets reinforcing copper matrix composites by electrochemical deposition[J]. Journal of Alloys and Compounds, 2018, 766(25):266-273. [24] XIONG C Y, LI T H, ZHAO T K, et al. Three-dimensional graphene/MnO2 nanowalls hybrid for high-efficiency electrochemical supercapacitors[J]. NANO, 2018, 13(1):doi:10.1142/s1793292018500133. [25] ZHOU J H, CHEN N N, GE Y, et al. Flexible all-solid-state micro-supercapacitor based on Ni fiber electrode coated with MnO2 and reduced graphene oxide via electrochemical deposition[J]. Science China Materials, 2018, 6(12):243-253. [26] FALCAO E H L, BLAIR R G, MACK J J, et al. Microwave exfoliation of a graphite intercalation compound[J]. Carbon, 2007, 45(6):1367-1369. [27] VIMUNA V M, ATHIRA A R, XAVIER T S, et al. Microwave assisted synthesis of graphene oxide-MnO2 nanocomposites for electrochemical supercapacitors[J]. AIP Conference Proceedings, 2018, 1953(1):doi:10.1063/1.5032471. [28] YAN J, FAN Z J, WEI T, et al. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes[J]. Carbon, 2010, 48(13):3825-3833. [29] LIU R R, WEN D D, ZHANG X Y, et al. Three-dimensional reduced-graphene/MnO2 prepared by plasma treatment as high-performance supercapacitor electrodes[J]. Materials Research Express, 2018, 5(6):doi:10.1088/2053-1591/aac7b4. [30] QIU X, XU D Y, MA L, et al. Preparation of manganese oxide/graphene aerogel and its application as an advanced supercapacitor electrode material[J]. International Journal of Electrochemical Science, 2017, 12:2173-2183. [31] ZHAO Y F, RAN W, HE J, et al. High-performance asymmetric supercapacitor based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability[J]. Small, 2014, 11(11):1310-1319. [32] MA W J, CHEN S H, YANG S Y, et al. Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density[J]. Carbon, 2017, 113:151-158. [33] SHENG L Z, JIANG L L, WEI T, et al. Fe(CN)63- ion-modified MnO2/graphene nanoribbons enabling high energy density asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(17):7649-7658. [34] RAKHI R B, ALHEBSHI N A, ANJUM D H, et al. Nanostructured cobalt sulfide-on-fiber with tunable morphology as electrodes for asymmetric hybrid supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(38):16190-16198. [35] LI J, CHEN Y, WU Q, et al. Synthesis and electrochemical properties of Fe3O4/MnO2/RGOs sandwich-like nano-superstructures[J]. Journal of Alloys & Compounds, 2017, 693:373-380. [36] OJHA G P, PANT B, PARK S J, et al. Synthesis and characterization of reduced graphene oxide decorated with CeO2-doped MnO2 nanorods for supercapacitor applications[J]. Journal of Colloid & Interface Science, 2017, 494:338-344. [37] WANG K, LI L W, XUE W, et al. Electrodeposition synthesis of PANI/MnO2/graphene composite materials and its electrochemical performance[J]. International Journal of Electrochemical Science, 2017, 12(9):8306-8314. [38] JI J Y, ZHANG X Y, HUANG Z L, et al. One-step synthesis of graphene oxide/polypyrrole/MnO2 ternary nanocomposites with an improved electrochemical capacitance[J]. Journal of Nanoscience & Nanotechnology, 2017, 17(6):4356-4361. [39] 刘文杰, 孙现众, 郝青丽. 电化学沉积制备MnO2/PEDOT:PSS复合材料及其电容特性研究[J]. 储能科学与技术, 2018, 7(2):262-269. LIU W J, SUN X Z, HAO Q L. Electrochemical deposition of MnO2/PEDOT:PSS composite and its capacitance characteristics[J]. Energy Storage Science and Technology, 2018, 7(2):262-269. [40] HAREESH K, SHATEESH B, JOSHI R P, et al. Ultra high stable supercapacitance performance of conducting polymer coated MnO2 nanorods/RGO nanocomposites[J]. RSC Advances, 2017, 7(32):20027-20036. [41] WU T, WANG C N, MO Y, et al. A ternary composite with manganese dioxide nanorods and graphene nanoribbons embedded in a polyaniline matrix for high-performance supercapacitors[J]. RSC Advances, 2017, 7(53):33591-33599. |
[1] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[2] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
[3] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[4] | Yunqi GUO, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of Al2O3 fibers using a template method, and the investigation of the thermal properties of paraffin phase-change composite [J]. Energy Storage Science and Technology, 2022, 11(2): 511-520. |
[5] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[6] | Boya ZHANG, Bohong LIU, Yuanhang LI, Xin LIU, Qianfeng CHEN, Sanying HOU. Binary oxide modified catalyst preparation and self-humidifying performance [J]. Energy Storage Science and Technology, 2021, 10(6): 2013-2019. |
[7] | Wenbing SONG, Yuanwei LU, Xiaotong CHEN, Cong HE, Zhansheng FAN, Yuting WU. The preparation and thermophysical properties of chloride/ceramic-shaped stabilized composite phase-change materials [J]. Energy Storage Science and Technology, 2021, 10(5): 1720-1728. |
[8] | Shuai CHEN, Ling CHEN, Hao JIANG. Nitrogen-doped amorphous vanadium oxide nanosheet arrays for rapid-charging quasi-solid asymmetric supercapacitors [J]. Energy Storage Science and Technology, 2021, 10(3): 945-951. |
[9] | Zhong XU, Jing HOU, Jun LI, Enhui WU, Ping HUANG, Yalan TANG. Properties of different particle-sized activated carbon/myristic acid composite phase change material [J]. Energy Storage Science and Technology, 2021, 10(1): 177-189. |
[10] | Chenlu YU, Xiaohua TIAN, han ZHENG, Zhejuan ZHANG, Zhuo SUN, Xianqing PIAO. Research progress in high stability of silicon/hard carbon anodes for LIBs [J]. Energy Storage Science and Technology, 2021, 10(1): 128-136. |
[11] | Jin WANG, Jianquan WANG, Dianbo RUAN, Jiao XIE, Bin YANG. Preparation and electrochemical performances of Si/activated carbon composites [J]. Energy Storage Science and Technology, 2021, 10(1): 104-110. |
[12] | Min LI, Jiayuan XIANG, Donghui YANG, Yuping WANG, Dong CHEN, Jian CHEN, Jiangping TU. Effect of carbon-coated Al foil on properties of lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1714-1719. |
[13] | Lanfang ZHU, Bing LIU. Influence of graphene surface distance and carbon nanotube diameter on capacitance of a double layer capacitor [J]. Energy Storage Science and Technology, 2020, 9(6): 1720-1728. |
[14] | Rixin LAI, Chuanjian JIANG, Lin LIU, Wenfeng ZHANG, Yu XIANG, Hai MING, Hao ZHANG, Gaoping CAO, Yun DU. Research progress of the regulation of nitrogen doping of graphene and the influence mechanism of supercapacitor capacitive performance [J]. Energy Storage Science and Technology, 2020, 9(6): 1657-1667. |
[15] | LIU Tengyu, ZHANG Xiong, AN Yabin, LI Chen, MA Yanwei. Research progress on the application of graphene for lithium-ion capacitors [J]. Energy Storage Science and Technology, 2020, 9(4): 1030-1043. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||