Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (4): 784-795.doi: 10.12028/j.issn.2095-4239.2019.0138
Previous Articles Next Articles
QI Wenbin, TIAN Feng, ZHANG Hua, JIN Zhou, ZHAO Juannian, WU Yida, ZHANG Yuanjie, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2019-06-17
Online:
2019-07-01
Published:
2019-07-01
CLC Number:
QI Wenbin, TIAN Feng, ZHANG Hua, JIN Zhou, ZHAO Juannian, WU Yida, ZHANG Yuanjie, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Apr. 01, 2019 to May 31, 2019)[J]. Energy Storage Science and Technology, 2019, 8(4): 784-795.
[1] ZHU J, CHEN G. Single-crystal based studies for correlating the properties and high-voltage performance of Li[NixMnyCo1-x-y] O2 cathodes[J]. Journal of Materials Chemistry A, 2019, 7(10):5463-5474. [2] LI W, ASL H Y, XIE Q, et al. Collapse of LiNi1-x-yCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries[J]. Journal of the American Chemical Society, 2019, 141(13):5097-5101. [3] XU C, XIANG W, WU Z G, et al. A highly-stabilized Ni-rich cathode material with Mo induced epitaxially grown nanostructured hybrid surface for high performance lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11:16629-16638. [4] YANG H, WU H H, GE M, et al. Simultaneously dual modifcation of Nirich layered oxide cathode for high-energy lithium-ion batteries[J]. Advanced Functional Materials, 2019, 29(13):doi:10.1002/adfm.201808825. [5] YAN P, ZHENG J, TANG Z K, et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes[J]. Nature Nanotechnology, 2019, 6:602-608. [6] CHEN Z, ZHANG Z, LI J. Polyhedral perspectives on the capacity limit of cathode compounds for lithium-ion batteries:A case study for Li6CoO4[J]. Physical Chemistry Chemical Physics, 2018, 20(31):20363-20370. [7] LEE S, JIN W, KIM S H, et al. Oxygen vacancy diffusion and condensation in li-ion battery cathode materials[J]. Angewandte Chemie, 2019, doi:10.1002/anie.201904469. [8] JEHNICHEN P, WEDLICH K, KORTE C. Degradation of high-voltage cathodes for advanced lithium-ion batteries differential capacity study on differently balanced cells[J]. Science and Technology of Advanced Materials, 2018, 20(1):1-9. [9] GONG Y, CHEN Y, ZHANG Q, et al. Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-41018-05833-x. [10] LI Y, SHI L, ZHOU Y, et al. Effect of carbonate precipitant on the microstructure and electrochemical properties of LiNi0.5Mn1.5O4 cathodes[J]. Journal of the Electrochemical Society, 2018, 165(9):A1671-A1678. [11] ZHAO H, LI F, SHU X, et al. Environment-friendly synthesis of high-voltage LiNi0.5Mn1.5O4 nanorods with excellent electrochemical properties[J]. Ceramics International, 2018, 44(16):20575-20580. [12] CHIBA K, HAMADA Y, HAYAKAWA H, et al. A novel synthetic route of micrometer-sized LiCoMnO4 as 5 V cathode material for advanced lithium ion batteries[J]. Solid State Ionics, 2019, 333:9-15. [13] GALVEZ-ARANDA D E, VERMA A, HANKINS K, et al. Chemical and mechanical degradation and mitigation strategies for Si anodes[J]. Journal of Power Sources, 2019, 419:208-218. [14] ZHU Y, HU W, ZHOU J, et al. Prelithiated surface oxide layer enabled high-performance Si anode for lithium storage[J]. ACS Applied Materials & Interfaces, 2019, 11(20):18305-18312. [15] LEE P K, TAHMASEBI M H, RAN S, et al. Leveraging titanium to enable silicon anodes in lithium-ion batteries[J]. Small, 2018, 14(41):doi:10.1002/smll.201802051. [16] HAO Q, HOU J, YE J, et al. Hierarchical macroporous Si/Sn composite:Easy preparation and optimized performances towards lithium storage[J]. Electrochimica Acta, 2019, 306:427-436. [17] MISHRA K, GEORGE K, ZHOU X D. Submicron silicon anode stabilized by single-step carbon and germanium coatings for high capacity lithium-ion batteries[J]. Carbon, 2018, 138:419-426. [18] OKASHY S, LUSKI S, ELIAS Y, et al. Practical anodes for Li-ion batteries comprising metallurgical silicon particles and multiwall carbon nanotubes[J]. Journal of Solid State Electrochemistry, 2018, 22(10):3289-3301. [19] PARIKH P, SINA M, BANERJEE A, et al. Role of polyacrylic acid (PAA) binder on the solid electrolyte interphase in silicon anodes[J]. Chemistry of Materials, 2019, 31(7):2535-2544. [20] MERY A, BERNARD P, VALERO A, et al. A polyisoindigo derivative as novel n-type conductive binder inside Si@C nanoparticle electrodes for Li-ion battery applications[J]. Journal of Power Sources, 2019, 420:9-14. [21] LI Q, LIU X, HAN X, et al. Identification of the solid electrolyte interface on the Si/C composite anode with FEC as the additive[J]. ACS Applied Materials & Interfaces, 2019, 11(15):14066-14075. [22] ZHU G, ZHANG F, LI X, et al. Engineering the distribution of carbon in silicon oxide nanospheres at the atomic level for highly stable anodes[J]. Angewandte Chemie, 2019, 58:6669-6673. [23] CAO Y, HATCHARD T D, DUNLAP R A, et al. Mechanofusion-derived Si-alloy/graphite composite electrode materials for Li-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(14):8335-8343. [24] DOSE W M, MARONI V A, MUNOZ P M J, et al. Assessment of Li-inventory in cycled Si-graphite anodes using LiFePO4 as a diagnostic cathode[J]. Journal of the Electrochemical Society, 2018, 165(10):A2389-A2396. [25] ZHANG H, LIAO X, GUAN Y, et al. Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-41018-06126-z. [26] TAN S J, YUE J, HU X C, et al. Nitriding interface regulated lithium plating enables flame-retardant electrolytes for high-voltage lithium metal batteries[J]. Angewandte Chemie, 2019, 23:7802-7807. [27] BAI M, XIE K, HONG B, et al. An artifcial Li3PO4 solid electrolyte interphase layer to achieve petal-shaped deposition of lithium[J]. Solid State Ionics, 2019, 333:101-104. [28] LEE J I, SHIN M, HONG D, et al. Effcient Li-ion-conductive layer for the realization of highly stable high-voltage and high-capacity lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(13):doi:10.1002/aenm.201803722. [29] LI C, LIU S, SHI C, et al. Two-dimensional molecular brushfunctionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes[J]. Nature Communications, 2019, 10:doi:10.1038/s41467-41019-09211-z. [30] PU J, LI J, ZHANG K, et al. Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits[J]. Nature Communications, 2019, 10(1):1896-1896. [31] DENG W, LIANG S, ZHOU X, et al. Depressing the irreversible reactions on a three-dimensional interface towards a high-areal capacity lithium metal anode[J]. Journal of Materials Chemistry A, 2019, 7(11):6267-6274. [32] GRIFFITH K J, WIADEREK K M, CIBIN G, et al. Niobium tungsten oxides for high-rate lithium-ion energy storage[J]. Nature, 2018, 559(7715):556-579. [33] SONG S, WANG H, WU L, et al. A bipolar and self-polymerized phthalocyanine complex for fast and tunable energy storage[J]. Angewandte Chemie, 2019, doi:10.1002/anie.201904242. [34] HAN J, KONG D, LV W, et al. Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-41017-02808-41462. [35] BHATTACHARYA P, LEE J H, KAR K K, et al. Carambola-shaped SnO2 wrapped in carbon nanotube network for high volumetric capacity and improved rate and cycle stability of lithium ion battery[J]. Chemical Engineering Journal, 2019, 369:422-431. [36] JIN J, WANG Z, WANG R, et al. Achieving high volumetric lithium storage capacity in compact carbon materials with controllable nitrogen doping[J]. Advanced Functional Materials, 2019, 29(12):doi:10.1002/adfm.201807441. [37] MO R, LI F, TAN X, et al. High-quality mesoporous graphene particles as high-energy and fast-charging anodes for lithium-ion batterie[J]. Nature Communications, 2019, 10:doi:10.1038/s41467-41019-09274-y. [38] MAO C, WOOD M, DAVID L, et al. Selecting the best graphite for long-life, high-energy Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(9):A1837-A1845. [39] QI W, BEN L, YU H, et al. Improving the electrochemical cycling performance of anode materials via facile in situ surface deposition of a solid electrolyte layer[J]. Journal of Power Sources, 2019, 424:150-157. [40] RIPHAUS N, STIASZNY B, BEYER H, et al. Understanding chemical stability issues between different solid electrolytes in all-solid-state batteries[J]. Journal of the Electrochemical Society, 2019, 166(6):A975-A983. [41] LI M, BAI Z, LI Y, et al. Electrochemically primed functional redox mediator generator from the decomposition of solid state electrolyte[J]. Nature Communications, 2019, 10(1):1890-1890. [42] CHEN B, JU J, MA J, et al. Strain tunable ionic transport properties and electrochemical window of Li10GeP2S12 superionic conductor[J]. Computational Materials Science, 2018, 153:170-175. [43] NOMURA Y, YAMAMOTO K, HIRAYAMA T, et al. Direct observation of a Li-ionic space-charge layer formed at an electrode/solid-electrolyte interface[J]. Angewandte Chemie, 2019, 58(16):5292-5296. [44] XU H, YU Y, WANG Z, et al. A theoretical approach to address interfacial problems in all-solid-state lithium ion batteries:Tuning materials chemistry for electrolyte and buffer coatings based on Li6PA5Cl halichalcogenides[J]. Journal of Materials Chemistry A, 2019, 7(10):5239-5247. [45] HANGHOFER I, BRINEK M, EISBACHER S L, et al. Substitutional disorder:structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I[J]. Physical Chemistry Chemical Physics:PCCP, 2019, 21(16):8489-8507. [46] WU F, FITZHUGH W, YE L, et al. Advanced sulfde solid electrolyte by core-shell structural design[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-41018-06123-41462. [47] ADELI P, BAZAK J D, PARK K H, et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution[J]. Angewandte Chemie, 2019, doi:10.1002/anie.201814222. [48] PUT B, MEES M J, HORNSVELD N, et al. Plasma-assisted ALD of LiPO(N) for solid state batteries[J]. Journal of the Electrochemical Society, 2019, 166(6):A1239-A1242. [49] TANG W, TANG S, GUAN X, et al. High-performance solid polymer electrolytes filled with vertically aligned 2D materials[J]. Advanced Functional Materials, 2019, 29(16):doi:10.1002/adfm.201900648. [50] FAGLIONI F, MERINOV B V, GODDARD W A, Ⅲ, et al. Factors affecting cyclic durability of all-solid-state lithium batteries using poly(ethylene oxide)-based polymer electrolytes and recommendations to achieve improved performance[J]. Physical Chemistry Chemical Physics, 2018, 20(41):26098-26104. [51] ALDALUR I, MARTINEZ I M, KRZTON M A, et al. Flowable polymer electrolytes for lithium metal batteries[J]. Journal of Power Sources, 2019, 423:218-226. [52] LEE T J, SOON J, CHAE S, et al. A bifunctional electrolyte additive for high-voltage LiNi0.5Mn1.5O4 positive electrodes[J]. ACS Applied Materials & Interfaces, 2019, 11(12):11306-11316. [53] SUN D, WANG Q, ZHOU J, et al. Forming a stable CEI layer on LiNi0.5Mn1.5O4 cathode by the synergy effect of FEC and HDI[J]. Journal of the Electrochemical Society, 2018, 165(10):A2032-A2036. [54] FAN X, CHEN L, BORODIN O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nature Nanotechnology, 2018, 13(8):715-724. [55] WANG S, CHEN S, GAO W, et al. A new additive 3-isocyanatopropyltrie thoxysilane to improve electrochemical performance of Li/NCM622 halfcell at high voltage[J]. Journal of Power Sources, 2019, 423:90-97. [56] NGUYEN C C, LUCHT B L. Development of electrolytes for Sigraphite composite electrodes[J]. Journal of the Electrochemical Society, 2018, 165(10):A2154-A2161. [57] JIAO S, REN X, CAO R, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3(9):739-746. [58] ASPERN N V, DIDDENS D, KOBAYASHI T, et al. Fluorinated cyclic phosphorus (Ⅲ)-based electrolyte additives for high voltage application in lithium ion batteries:Impact of structure-reactivity relationships on CEI formation and cell performance[J]. ACS Applied Materials & Interfaces, 2019, 11:16605-16618. [59] TESEMMA M, WANG F-M, HAREGEWOIN A M, et al. Investigation of the dipole moment effects of fluorofunctionalized electrolyte additives in a lithium ion battery[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7):6640-6653. [60] KRANZ S, KRANZ T, JAEGERMANN A G, et al. Is the solid electrolyte interphase in lithium-ion batteries really a solid electrolyte? Transport experiments on lithium bis(oxalato)borate-based model interphases[J]. Journal of Power Sources, 2019, 418:138-146. [61] MIYAZAKI K, TAKENAKA N, FUJIE T, et al. Impact of cis- versus trans-confguration of butylene carbonate electrolyte on microscopic solid electrolyte interphase formation processes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(17):15623-15629. [62] KIM D Y, PARK I, SHIN Y, et al. Ni-stabilizing additives for completion of Ni-rich layered cathode systems in lithium-ion batteries:An ab initio study[J]. Journal of Power Sources, 2019, 418:74-83. [63] ZHENG H, ZHOU X, CHENG S, et al. High-voltage LiNi0.5Mn1.5O4 cathode stability of fluorinated ether based on enhanced separator wettability[J]. Journal of the Electrochemical Society, 2019, 166(8):A1456-A1462. [64] JIANG L, WANG Q, LI K, et al. A self-cooling and flame-retardant electrolyte for safer lithium ion batteries[J]. Sustainable Energy & Fuels, 2018, 2(6):1323-1331. [65] GUO P, SU A, WEI Y, et al. Healable, highly conductive, flexible, and nonflammable supramolecular ionogel electrolytes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11:19413-19420. [66] ZENG Z, MURUGESAN V, HAN K S, et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 3(8):674-681. [67] LIU B, LI Q, ENGELHARD M H, et al. Constructing robust electrode/electrolyte interphases to enable wide-temperature applications of lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2019, doi:10.1021/acsami.9b03821. [68] LIU K, CHENG C F, ZHOU L, et al. A shear thickening fluid based impact resistant electrolyte for safe Li-ion batteries[J]. Journal of Power Sources, 2019, 423:297-304. [69] KATO A, SUYAMA M, HOTEHAMA C, et al. High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4 interfaces modified with Au thin films[J]. Journal of the Electrochemical Society, 2018, 165(9):A1950-A1954. [70] YAN H, WANG H, WANG D, et al. In situ generated Li2S-C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading[J]. Nano Letters, 2019, 19(5):3280-3287. [71] LI X, LIANG J, LUO J, et al. High-performance Li-SeSx all-solid-state lithium batteries[J]. Advanced Materials, 2019, 31(17):doi:10.1002/adma.201808100. [72] MATSUDA R, HIRABARA E, PHUC N H H, et al. Composite cathode of NCM particles and Li3PS4-LiI electrolytes prepared using the SEED method for all-solid-state lithium batteries[J]. Materials Science and Engineering, 2018, 429:doi:10.1088/1757-1899X/1429/1081/012033. [73] NAKAMURA T, AMEZAWA K, KULISCH J, et al. Guidelines for allsolid-state battery design and electrode buffer layers based on chemical potential profle calculation[J]. ACS Applied Materials & Interfaces, 2019, doi:10.1021/acsami.9b03053. [74] ZHOU J, QIAN T, LIU J, et al. High-safety all-solid-state lithiummetal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte[J]. Nano Letters, 2019, 19:3066-3073. [75] CHEN Y, GAO X, JOHNSON L R, et al. Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium-oxygen cell[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-41018-03204-41460. [76] SU C C, HE M, AMINE R, et al. Establishment of selection rule for hydrofluoroether as electrolyte co-solvent through linear free-energy relationship in lithium-sulfur batteries[J]. Angewandte Chemie, 2019, doi:10.1002/anie.201904240. [77] BENITEZ A, CABALLERO A, MORALES J, et al. Physical activation of graphene:An effective, simple and clean procedure for obtaining microporous graphene for high-performance Li/S batteries[J]. Nano Research, 2019, 12(4):759-766. [78] CHU H, NOH H, KIM Y J, et al. Achieving three-dimensional lithium sulfde growth in lithium-sulfur batteries using high-donor-number anions[J]. Nature Communications, 2019, 10:doi:10.1038/s41467-41018-07975-41464. [79] LI X, LIANG J, LI W, et al. Stabilizing sulfur cathode in carbonate and ether electrolytes:Excluding long-chain lithium polysulfde formation and switching lithiation/delithiation route[J]. Chemistry of Materials, 2019, 31(6):2002-2009. [80] YANG X, GAO X, SUN Q, et al. Promoting the transformation of Li2S2 to Li2S:Signifcantly increasing utilization of active materials for high-sulfur-loading Li-S batteries[J]. Advanced Materials (Deerfield Beach, Fla.), 2019, doi:10.1002/adma.201901220. [81] ABRAHAM A, HUANG J, SMITH P F, et al. Communicationdemonstration and electrochemistry of a self-forming solid state rechargeable LiI(HPN) 2 based Li/I 2 battery[J]. Journal of the Electrochemical Society, 2018, 165(10):A2115-A2118. [82] GRISSA R, ABRAMOVA A, TAMBIO S J, et al. Thermomechanical polymer binder reactivity with positive active materials for Li metal polymer and Li-ion batteries:An XPS and XPS imaging study[J]. ACS Applied Materials & Interfaces, 2019, 11(20):18368-18376. [83] NIE Z, MCCORMACK P, BILHEUX H Z, et al. Probing lithiation and delithiation of thick sintered lithium-ion battery electrodes with neutron imaging[J]. Journal of Power Sources, 2019, 419:127-136. [84] DAEMI S R, LU X, SYKES D, et al. 4D visualisation of in situ nano-compression of Li-ion cathode materials to mimic early stage calendering[J]. Materials Horizons, 2019, 6(3):612-617. [85] SULAS D B, JOHNSTON S, SEITZMAN N, et al. Defect detection in solid-state battery electrolytes using lock-in thermal imaging[J]. Journal of the Electrochemical Society, 2018, 165(13):A3205-A3211. [86] YU S, HUANG X, BROCK J D, et al. Regulating key variables and visualizing lithium dendrite growth:An operando X-ray study[J]. Journal of the American Chemical Society, 2019, 141:8441-8449. [87] KOBAYASHI S, KUWABARA A, FISHER C A J, et al. Microscopic mechanism of biphasic interface relaxation in lithium iron phosphate after delithiation[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-41018-05241-41461. [88] MULLALIU A, AQUILANTI G, STIEVANO L, et al. Beyond the oxygen redox strategy in designing cathode material for batteries:Dynamics of a prussian blue-like cathode revealed by operando X-ray diffraction and X-ray absorption fne structure and by a theoretical approach[J]. Journal of Physical Chemistry C, 2019, 123(14):8588-8598. [89] MATSUDA Y, KUWATA N, OKAWA T, et al. In situ raman spectroscopy of LixCoO2 cathode in Li/Li3PO4/LiCoO2 all-solid-state thin-flm lithium battery[J]. Solid State Ionics, 2019, 335:7-14. [90] BERCKMANS G, DE SUTTER L, MARINARO M, et al. Analysis of the effect of applying external mechanical pressure on next generation silicon alloy lithium-ion cells[J]. Electrochimica Acta, 2019, 306:387-395. [91] BHARATHRAJ S, ADIGA S P, PATIL R S, et al. An effcient and chemistry independent analysis to quantify resistive and capacitive loss contributions to battery degradation[J]. Scientifc Reports, 2019, 9(1):6576-6576. [92] KONDO H, SAWADA H, OKUDA C, et al. Influence of the active material on the electronic conductivity of the positive electrode in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(8):A1285-A1290. [93] LI Y, QI Y. Energy landscape of the charge transfer reaction at the complex Li/SEI/electrolyte interface[J]. Energy & Environmental Science, 2019, 12(4):1286-1295. [94] YAN C, LI H R, CHEN X, et al. Regulating inner helmholtz plane for stable solid electrolyte inter-phase on lithium metal anodes[J]. Journal of the American Chemical Society, 2019, doi:10.1021/jacs.9b05029. [95] ARRIAZU G E M, PINTO O A, LOPEZ DE MISHIMA B A, et al. The kinetic origin of the daumas-herold model for the Li-ion/graphite intercalation system[J]. Electrochemistry Communications, 2018, 93:133-137. [96] INTAN N N, KLYUKIN K, ALEXANDROV V. Ab initio modeling of transition metal dissolution from the LiNi0.5Mn1.5O4 cathode[J]. ACS Applied Materials & Interfaces, 2019, doi:10.1021/acsami.9b06010. [97] HAO F, WANG W, MUKHERJEE P P. Electrochemical-reaction-driven interfacial stress in a solid-solid layered architecture[J]. Physical Review Applied, 2019, 11(3):doi:10.1103/PhysRevApplied.1111.034038. [98] KAZEMI N, DANILOV D L, HAVERKATE L, et al. Modeling of allsolid-state thin-flm Li-ion batteries:Accuracy improvement[J]. Solid State Ionics, 2019, 334:111-116. [99] TRAN M K, RODRIGUES M T F, KATO K, et al. Deep eutectic solvents for cathode recycling of Li-ion batteries[J]. Nature Energy, 2019, 4(4):339-345. [100] LEPAGE D, SAVIGNAC L, SAULNIER M, et al. Modification of aluminum current collectors with a conductive polymer for application in lithium batteries[J]. Electrochemistry Communications, 2019, 102:1-4. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[7] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[8] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[9] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[12] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[13] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[14] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[15] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||