Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (5): 1234-1250.doi: 10.19799/j.cnki.2095-4239.2020.0192
Previous Articles Next Articles
Mengying MA1(), Huilin PAN1(), Yongsheng HU2,3
Received:
2020-05-29
Revised:
2020-07-15
Online:
2020-09-05
Published:
2020-09-08
Contact:
Huilin PAN
E-mail:21937034@zju.edu.cn;panhuilin@zju.edu.cn
CLC Number:
Mengying MA, Huilin PAN, Yongsheng HU. Progress in electrolyte research for non-aqueous sodium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1234-1250.
1 | BLOMGREN G E. The development and future of lithium ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(1): A5019-A5025. |
2 | MEISTER P, JIA Haiping, LI Jie, et al. Best practice: Performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency[J]. Chemistry of Materials, 2016, 28(20): 7203-7217. |
3 | TARASCON J M. Is lithium the new gold?[J]. Nature Chemistry, 2010, 2(6): 510. |
4 | SCHMUCH R, WAGNER R, HÖRPEL G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018, 3: 267-278. |
5 | NAGELBERG A S, WORRELL W L. A thermodynamic study of sodium-intercalated TaS2 and TiS2[J]. Journal of Solid State Chemistry, 1979, 29: 345-354. |
6 | PARANT J P, OLAZCUAGA R, DEVALETTE M, et al. Sur quelques nouvelles phases de formule NaxMnO2 (x≤1)[J]. Journal of Solid State Chemistry, 1971, 3(1): 1-11. |
7 | WHITTINGHAM M S. Chemistry of intercalation compounds metal guests in chalcogenide hosts[J]. Progress in Solid State Chemistry, 1978, 12(1): 41-99. |
8 | NISHI Y. Lithium ion secondary batteries, past 10 years and the future[J]. Journal of Power Sources, 2001, 100(1/2): 101-106. |
9 | NAYAK P K, YANG L T, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie International Edition, 2018, 57(1): 102-120. |
10 | KUNDU D, TALAIE E, DUFFORT V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angewandte Chemie International Edition, 2015, 54(11): 3431-3448. |
11 | MENDIBOURE A, DELMAS C, HAGENMULLER P. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes[J]. Journal of Solid State Chemistry, 1985, 57(3): 323-331. |
12 | JIAN Zelang, ZHAO Liang, PAN Huili, et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries[J]. Electrochemistry Communications, 2012, 14: 86-89. |
13 | LU Yuhao, WANG Long, CHENG Jinguang, et al. Prussian blue: A new framework of electrode materials for sodium batteries[J]. Chemical Communications, 2012, 48(52): 6544-6546. |
14 | STEVENSA D A, DAHN J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(4): 1271-1273. |
15 | PONROUCH A, MONTI D, BOSCHIN A, et al. Non-aqueous electrolytes for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 17(3): 22-42. |
16 | PONROUCH A, MARCHANTE E, COURTY M, et al. In search of an optimized electrolyte for Na-ion batteries[J]. Energy & Environmental Science, 2012, 5(9): 8572-8583. |
17 | SHAKOURIAN-FARD M, KAMATH G, SMITH K, et al. Trends in Na-ion solvation with alkyl-carbonate electrolytes for sodium-ion batteries: Insights from first-principles calculations[J]. The Journal of Physical Chemistry C, 2015, 119(40): 22747-22759. |
18 | ESHETU G G, GRUGEON S, KIM Huikyong, et al. Comprehensive insights into the reactivity of electrolytes based on sodium ions[J]. ChemSusChem, 2016, 9(5): 462-471. |
19 | PONROUCH A, DEDRYVÈRE R, MONTI D, et al. Towards high energy density sodium ion batteries through electrolyte optimization[J]. Energy & Environmental Science, 2013, 6(8): 2361-2369 |
20 | LI Yuqi, YANG Yang, LU Yaxiang, et al. Ultralow-concentration electrolyte for Na-ion batteries[J]. ACS Energy Letters, 2020, 5(4): 1156-1158. |
21 | LI Yuqi, LU Yaxiang, CHEN Liquan, et al. Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries[J]. Chinese Physics B, 2020, 29(4): doi: 10. 1088/1674-1056/ab7906. |
22 | KUMAR H, DETSI E, ABRAHAM D P. Fundamental mechanisms of solvent decomposition involved in solid-electrolyte interphase formation in sodium ion batteries[J]. Chemistry of Materials, 2016, 28: 8930-8941. |
23 | PAN Kanghua, LU Haiyan, ZHONG Faping, et al. Understanding the electrochemical compatibility and reaction mechanism on Na metal and hard carbon anodes of PC-based electrolytes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39651-39660. |
24 | KOMABA S, ISHIKAWA T, YABUUCHI N, et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries[J]. ACS Applied Materials & Interfaces, 2011, 3(11): 4165-4168. |
25 | MOGENSEN R, BRANDELL D, YOUNESI R. Solubility of the solid electrolyte interphase (SEI) in sodium ion batterie[J]. ACS Energy Letters, 2016, 1: 1173-1178. |
26 | BOUIBES A, TAKENAKA N, FUJIE T, et al. Concentration effect of fluoroethylene carbonate on the formation of solid electrolyte interphase layer in sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28525-28532. |
27 | WIETHELMANN U, LISCHKA U, WEGNER M. Lithium bisoxalatoborate used as conducting salt in lithium ion batteries: DE 19829030C1[P]. 1999-06-07. |
28 | CHEN Xilin, XU Wu, ENGELHARD M H, et al. Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperaturess[J]. Journal of Materials Chemistry A, 2014, 2(7): 2346-2352. |
29 | XIANG Hongfa, SHI Pengcheng, BHATTACHARYA P, et al. Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato) borate dual-salt electrolytes[J]. Journal of Power Sources, 2016, 318: 170-177. |
30 | GE Chunhua, WANG Lixia, XUE Lili, et al. Synthesis of novel organic-ligand-doped sodium bis(oxalate)-borate complexes with tailored thermal stability and enhanced ion conductivity for sodium ion batteries[J]. Journal of Power Sources, 2014, 248: 77-82. |
31 | NOBUHARA K, NAKAYAMA H, NOSE M, et al. First-principles study of alkali metal-graphite intercalation[J]. Journal of Power Sources, 2013, 243: 585-587. |
32 | JACHE B, ADELHELM P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition, 2014, 53(38): 10169-10173. |
33 | KIM Haegyeom, HONG Jihyun, PARK Young-Uk, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Advanced Functional Materials, 2015, 25(4): 534-541. |
34 | KARIMI N, VARZI A, PASSERINI S A. comprehensive insight into the volumetric response of graphite electrodes upon sodium co-intercalation in ether-based electrolytes[J]. Electrochimica Acta, 2019, 304: 474-486. |
35 | Zhi Wei SEH, SUN Jie, SUN Yongming, et al. A highly reversible roomtemperature sodium metal anode[J]. ACS Central Science, 2015, 1(8): 449-455. |
36 | GOKTAS M, BOLLI C, BUCHHEIM J, et al. Stable and unstable diglyme-based electrolytes for batteries with sodium or graphite as electrode[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 32844-32855. |
37 | LI Kaikai, ZHANG Jun, LIN Dongmei, et al. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes[J]. Nature Communications, 2019, 10(1): 725-736. |
38 | MATSUMOTO K, HOSOKAWA T, NOHIRA T, et al. The Na[FSA]-[C2C1im][FSA] (C2C1im+: 1-ethyl-3-methylimidazolium and FSA: Bis(fluorosulfonyl)amide) ionic liquid electrolytes for sodium secondary batteries[J]. Journal of Power Sources, 2014, 265: 36-39. |
39 | MONTI D, JÓNSSON E, PALACíN M R, et al. Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity[J]. Journal of Power Sources, 2014, 245: 630-636. |
40 | HAGIWARA R, MATSUMOTO K, HWANG Jinkwang, et al. Sodium ion batteries using ionic liquids as electrolytes[J]. The Chemical Record, 2018, 19(4): 758-770. |
41 | CHAGAS L G, BUCHHOLZ D, WU Liming, et al. Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyte[J]. Journal of Power Sources, 2014, 247: 377-383. |
42 | BRUTTI S, NAVARRA M A, MARESCA G, et al. Ionic liquid electrolytes for room temperature sodium battery systems[J]. Electrochimica Acta, 2019, 306: 317-326. |
43 | DING Changsheng, NOHIRA T, HAGIWARA R, et al. Na[FSA]-[C3C1pyrr][FSA] ionic liquids as electrolytes for sodium secondary batteries: Effects of Na ion concentration and operation temperature[J]. Journal of Power Sources, 2014, 269: 124-128. |
44 | YAMAMOTO T, MITSUHASHI K, MATSUMOTO K, et al. Probing the mechanism of improved performance for sodium-ion batteries by utilizing three-electrode cells: effects of sodium-ion concentration in ionic liquid electrolytes[J]. Electrochemistry, 2019, 87(3): 175-181. |
45 | SUN Hao, ZHU Guanzhou, XU Xintong, et al. A safe and nonflammable sodium metal battery based on an ionic liquid electrolyte[J]. Nnature Communications, 2019, 10(1): 3302-3313. |
46 | BALAKRISHNAN P G, RAMESH R, PREM KUMAR T. Safety mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2006, 155(2): 401-414. |
47 | FENG Jinkui, AN Yongling, Lijie CI, et al. Nonflammable electrolyte for safer non-aqueous sodium batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 14539-14544. |
48 | FENG Jinkui, ZHANG Zhen, LI Lifei, et al. Ether-based nonflammable electrolyte for room temperature sodium battery[J]. Journal of Power Sources, 2015, 284: 222-226. |
49 | SHIM Eungi, Taeheum NAM, KIM Junggu, et al. Effect of the concentration of diphenyloctyl phosphate as a flame-retarding additive on the electrochemical performance of lithium-ion batteries[J]. Electrochimica Acta, 2009, 54: 2276-2283. |
50 | NAKAGAWA H, OCHIDA M, DOMI Y, et al. Electrochemical Raman study of edge plane graphite negative-electrodes in electrolytes containing trialkyl phosphoric ester[J]. Journal of Power Sources, 2012, 212: 148-153. |
51 | JIANG X, ZENG Z, XIAO L, et al. An all-phosphate and zero-strain sodium-ion battery based on Na3V2(PO4)3 cathode, NaTi2(PO4)3 anode, and trimethyl phosphate electrolyte with intrinsic safety and long lifespan[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43733-43738. |
52 | XU Kang, ZHANG Shengshui, ALLEN J L, et al. Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries (Ⅱ): Performance in cell[J]. Electrochemical Society, 2003, 150(2): A170-A175. |
53 | YAMADA Y, WANG Jianhui, Seongjae KO, et al. Advances and issues in developing saltconcentrated battery electrolytes[J]. Nature Energy, 2019, 4: 427-439. |
54 | WANG Jianhui, YAMADA Y, SODEYAMA K, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2018, 3: 22-29. |
55 | JIANG Xiaoyu, LIU Xingwei, ZENG Ziqi, et al. A nonflammable Na+-based dual-carbon battery with low-cost, high voltage, and long cycle life[J]. Advanced Energy Materials, 2018, 8: 1802176-1802185. |
56 | LIU Xingwei, JIANG Xiaoyu, ZENG Ziqi, et al. High capacity and cycle-stable hard carbon anode for non-flammable sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38141-38150. |
57 | ZENG Ziqi, JIANG Xiaoyu, LI Ran, et al. A safer sodium-ion battery based on nonflammable organic phosphate electrolyte[J]. Advanced Science, 2016, 3(9): 1600066-1600074. |
58 | JIANG Xiaoyu, LIU Xingwei, ZENG Ziqi, et al. A bifunctional fluorophosphate electrolyte for safer sodium-ion batteries[J]. iScience, 2018, 10: 114-122. |
59 | TAKADA K, YAMADA Y, YAMADA A. Optimized nonflammable concentrated electrolytes by introducing a low-dielectric diluent[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 35770-35776. |
60 | ZHENG Jianming, CHEN Shuru, ZHAO Wengao, et al. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes[J]. ACS Energy Letters, 2018, 3(2): 315-321. |
61 | FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589-589. |
62 | ARMAND M B, CHABAGNO J M, M. D. Second international meeting on solid electrolytes[C]//University of St. Andrews, Scotland, September20-22, 1978. |
63 | WEST K, ZACHAU-CHRISTIANSEN B, JACOBSEN T, et al. Poly(ethylene oxide)-sodium perchlorate electrolytes in solid-state sodium cells[J]. British Polymer Journal, 1988, 20(3): 243-246. |
64 | BOSCHIN A, JOHANSSON P. Characterization of NaX (X: TFSI, FSI)-PEO based solid polymer electrolytes for sodium batteries[J]. Electrochimica Acta, 2015, 175: 124-133. |
65 | QI Xingguo, MA Qiang, LIU Lilu, et al. Sodium bis(fluorosulfonyl)imide-poly(ethylene oxide) polymer electrolytes for sodium ion battereis[J]. ChemElectroChem, 2016, 3(11): 1741-1745. |
66 | MA Qiang, LIU Juanjuan, QI Xingguo, et al. A new Na[(FSO2)(n-C4F9SO2)N]-based polymer electrolyte for solid-state sodium batteries[J]. Journal of Materials Chemistry A, 2017, 5: 7738-7743. |
67 | LIU Lilu, QI Xingguo, YIN Shijun, et al. In situ formation of a stable interface in solid-state batteries[J]. ACS Energy Letters, 2019, 4: 1650-1657. |
68 | VILLALUENGA I, BOGLE X, GREENBAUM S, et al. Cation only conduction in new polymer-SiO2 nanohybrids: Na+ electrolytes[J]. Journal of Materials Chemistry A, 2013, 1(29): 8348-8352. |
69 | CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394: 456-458. |
70 | NI'MAH Y L, CHENG Mingyao, CHENG Juhsiang, et al. Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries[J]. Journal of Power Sources, 2015, 278: 375-381. |
71 | ZHANG Zhizhen, XU Kaiqi, RONG Xiaohui, et al. Na3.4Zr1.8Mg0.2Si2PO12 filled poly(ethylene oxide)Na(CF3SO2)2N as flexible composite polymer electrolyte for solid-state sodium batteries[J]. Journal of Power Sources, 2017, 372: 270-275. |
72 | XIAO Zhuliu, ZHOU Binghua, WANG Jirong, et al. PEO-based electrolytes blended with star polymers with precisely imprinted polymeric pseudo-crown ether cavities for alkali metal ion batteries[J]. Journal of Membrane Science, 2019, 576: 182-189. |
73 | ISA K B, ALI N M, OTHMAN L, et al. Ionic conductivity and dielectric properties of the PAN-ion conducting polymers[J]. AIP Conference Proceedings, 2008, 1017: 264-269. |
74 | ABDULLAH O G, AZIZ S B, SABER D R, et al. Characterization of polyvinyl alcohol film doped with sodium molybdate as solid polymer electrolytes[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(12): 8928-8936. |
75 | HALLINAN JR D T, BALSARA N P. Polymer electrolytes[J]. Annual Review of Materials Research, 2013, 43: 503-525. |
76 | HONG H Y P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3-xO12[J]. Materials Research Bulletin, 1976, 11(2): 173-182. |
77 | GOODENOUGH J B, HONG H Y P, PKAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11(2): 203-220. |
78 | ZHANG Zhizhen, ZOU Zheyi, KAUP K, et al. Correlated migration invokes higher Na+-ion conductivity in NaSICON-type solid electrolytes[J]. Advanced Energy Materials, 2019, 42(9): 1902373-1902387. |
79 | KHAKPOUR Z. Influence of M: Ce4+, Gd3+ and Yb3+ substituted Na3+xZr2-xMxSi2PO12 solid NASICON electrolytes on sintering, microstructure and conductivity[J]. Electrochimica Acta, 2016, 196: 337-347. |
80 | MA Qianli, GUIN M, NAQASH S, et al. Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors[J]. Chemistry of Materials, 2016, 28(13): 4821-4828. |
81 | ZHANG Zhizhen, ZHANG Qinghua, SHI Jinan, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life[J]. Advanced Energy Materials, 2017, 7(4): 1601196-1601207. |
82 | KIM J K, LIM Y J, KIM H J, et al. A hybrid solid electrolyte for flexible solid-state sodium batteries[J]. Energy & Environmental Science, 2015, 8(12): 3589-3596. |
83 | ZHOU W D, LI Y T, XIN S, et al. Rechargeable sodium all-solid-state battery[J]. ACS Central Science, 2017, 3: 52-57. |
84 | CHEN Shaojie, XIE Dongjiu, LIU Gaozhan, et al. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14: 58-74. |
85 | HAYASHI A, NOI K, SAKUDA A, et al. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries[J]. Nature Communications, 2012, 3: 856-862. |
86 | HAYASHI A, NOI K, TANIBATA N, et al. High sodium ion conductivity of glasseceramic electrolytes with cubic Na3PS4[J]. Journal of Power Sources, 2014, 258: 420-423. |
87 | YUBUCHI S, HAYASHI A, TATSUMISAGO M. Sodium-ion conducting Na3PS4 electrolyte synthesized via a liquid-phase process using N-methylformamide[J]. Chemistry Letters, 2015, 44: 884-886. |
88 | UEMATSU M, YUBUCHI S, NOI K, et al. Preparation of Na3PS4 electrolyte by liquid-phase process using ether[J]. Solid State Ionics, 2018, 320: 33-37. |
89 | XU Jieru, LIU Lilu, YAO Nan, et al. Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries[J]. Materials Today Nano, 2019, 8: 100048-100085. |
90 | WAN Hongli, MWIZERWA J P, QI Xingguo, et al. Nanoscaled Na3PS4 solid electrolyte for all-solid-state FeS2/Na batteries with ultrahigh initial coulombic efficiency of 95% and excellent cyclic performances[J]. ACS Applied Materials &Interfaces, 2018, 10(15): 12300-12304. |
91 | YU Z X, SHANG S L, SEO J H, et al. Exceptionally high ionic conductivity in Na3P0.62As0.38S4 with improved moisture stability for solid-state sodium-ion batteries[J]. Advanced Materials, 2017, 29(16): 1605561-1605568. |
92 | XU Xiaoyan, LI Yuanyuan, CHENG Jun, et al. Composite solid electrolyte of Na3PS4-PEO for all-solid-state SnS2/Na batteries with excellent interfacial compatibility between electrolyte and Na metal[J]. Journal of Energy Chemistry, 2020, 41: 73-78. |
93 | HU Pu, ZHANG Ye, CHI Xiaowei, et al. Stabilizing the interface between sodium metal anode and sulfide-based solid-state electrolyte with an electron-blocking interlayer[J]. ACS Applied Materials &Interfaces, 2019, 11(10): 9672-9678. |
94 | DUCHARDT M, RUSCHEWITZ U, ADAMS S, et al. Vacancy-controlled Na+ superion conduction in Na11Sn2PS12[J]. Angewandte Chemie International Edition, 2018, 130: 1-6. |
95 | ZHANG Z, RAMOS E, LALÈRE F, et al. Na11Sn2PS12: A new solid state sodium superionic conductor[J]. Energy & Environmental Science, 2018, 11: 87-93. |
96 | LIU Jiapeng, LU Ziheng, EFFAT M B, et al. A theoretical study on the stability and ionic conductivity of the Na11M2PS12 (M=Sn, Ge) superionic conductors[J]. Journal of Power Sources, 2019, 409: 94-101. |
97 | SUN Yulong, WANG Yuechao, LIANG Xinmiao, et al. Rotational cluster anion enabling superionic conductivity in sodium-rich antiperovskite Na3OBH4[J]. Journal of the American Chemistry Society, 2019, 141(14): 5640-5644. |
98 | ZHANG Zhizhen, ROY P N, LI Hui, et al. Coupled cation-anion dynamics enhances cation mobility in room-temperature superionic solid-state electrolytes[J]. Journal of the American Chemistry Society, 2019, 141(49): 19360-19372. |
[1] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[2] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
[3] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[4] | Shiwei DENG, Jianfang WU, Tuo SHI. Defect chemistry analysis of solid electrolytes: Point defects in grain bulk and grain boundary space-charge layer [J]. Energy Storage Science and Technology, 2022, 11(3): 939-947. |
[5] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
[6] | Shangsen CHI, Yidong JIANG, Qingrong WANG, Ziwei YE, Kai YU, Jun MA, Jun JIN, Jun WANG, Chaoyang WANG, Zhaoyin WEN, Yonghong DENG. The liquid electrolyte modified interface between garnet-type solid-state electrolyte and lithium anode [J]. Energy Storage Science and Technology, 2021, 10(3): 914-924. |
[7] | Saisai ZHANG, Hailei ZHAO. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress [J]. Energy Storage Science and Technology, 2021, 10(3): 863-871. |
[8] | Yanming CUI, Zhihua ZHANG, Yuanqiao HUANG, Jiu LIN, Xiayin YAO, Xiaoxiong XU. Prototype all-solid-state battery electrodes preparation and assembly technology [J]. Energy Storage Science and Technology, 2021, 10(3): 836-847. |
[9] | Xinxin ZHU, Wei JIANG, Zhengwei WAN, Shu ZHAO, Zeheng LI, Liguang WANG, Wenbin NI, Min LING, Chengdu LIANG. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 848-862. |
[10] | Peng ZHANG, Xingqiang LAI, Junrong SHEN, Donghai ZHANG, Yongheng YAN, Rui ZHANG, Jun SHENG, Kangwei DAI. Research and industrialization progress of solid-state lithium battery [J]. Energy Storage Science and Technology, 2021, 10(3): 896-904. |
[11] | Chunyan YANG, Yunlong MA, Xiaoqiong FENG, Shiying ZHANG, Changsheng AN, Jingfeng LI. Research progress of carbon-based materials in aluminum-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(2): 432-439. |
[12] | Jin WANG, Jianquan WANG, Dianbo RUAN, Jiao XIE, Bin YANG. Preparation and electrochemical performances of Si/activated carbon composites [J]. Energy Storage Science and Technology, 2021, 10(1): 104-110. |
[13] | Xi LI, Yajuan YU, Zhiqi ZHANG, Lei WANG, Kai HUANG. Advance and patent analysis of solid electrolyte in solid-state lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 77-86. |
[14] | Jixian WANG, Sikan PENG, Wenzheng NAN, Xiang CHEN, Chen WANG, Shaojiu YAN, Shenglong DAI. Preparation of graphene-coated Li1.22Mn0.52Ni0.26O2 using a spray drying method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 111-117. |
[15] | Jiajing ZHU, Yun GAO. Research progress of water-in-salt electrolytes [J]. Energy Storage Science and Technology, 2020, 9(S1): 13-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||