Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (5): 1309-1317.doi: 10.19799/j.cnki.2095-4239.2020.0230
Previous Articles Next Articles
Yongsheng GAO, Guanghai CHEN, Xinran WANG, Ying BAI, Chuan WU
Received:
2020-06-30
Revised:
2020-07-23
Online:
2020-09-05
Published:
2020-09-08
CLC Number:
Yongsheng GAO, Guanghai CHEN, Xinran WANG, Ying BAI, Chuan WU. Safety of electrolytes for sodium-ion batteries: Strategies and progress[J]. Energy Storage Science and Technology, 2020, 9(5): 1309-1317.
1 | DUNN B, KAMATH H, TARASCONE J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 6058(334): 928-935. |
2 | LI M, LU J, CHEN Z, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): doi: 10.1002/adma.201800561. |
3 | 李冰心, 张振花. 中国锂产业概况[J]. 中国有色金属, 2018(2): 40-41. |
LI Binxin, ZHANG Zhenhua. Overview of China's lithium industry[J]. China Nonferrous Metals, 2018(2): 40-41. | |
4 | SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958. |
5 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
6 | VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature, 2018(3): doi: 10.1038/natrevmats.2018.13. |
7 | 朱娜, 吴锋, 吴川, 等. 钠离子电池的电解质[J]. 储能科学与技术, 2016, 5(3): 285-291. |
ZHU N, WU F, WU C, et al. Electrolytes of sodium ion batteries[J]. Energy Stroage Science and Technology, 2016, 5(3): 285-291. | |
8 | LU Y, LI L, ZHANG Q, et al. Electrolyte and interface engineering for solid-state sodium batteries[J]. Joule, 2018, 2(9): 1747-1770. |
9 | HUANG Y, ZHAO L, LI L, et al. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: From scientific research to practical application[J]. Advanced Materials, 2019, 31(21): doi: 10.1002/adma.201808393. |
10 | THIMMAPPA R, GAUTAM M, ARALEKALLU S, et al. A rechargeable aqueous sodium-ion battery[J]. ChemElectroChem, 2019, 6(7): 2095-2099. |
11 | ZHAO C, LIU L, QI X, et al. Solid-state sodium batteries[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201703012. |
12 | BRAGA M H, GRUNDISH N S, MURCHISON A J, et al. Alternative strategy for a safe rechargeable battery[J]. Energy & Environmental Science, 2017, 10(1): 331-336. |
13 | ZHOU C, BAG S, THANGADURAI V. Engineering materials for progressive all-solid-state Na batteries[J]. ACS Energy Letters, 2018, 3(9): 2181-2198. |
14 | NOOR S A M, YOON H, FORSYTH M, et al. Gelled ionic liquid sodium ion conductors for sodium batteries[J]. Electrochimica Acta, 2015, 169: 376-381. |
15 | ESHETU G G, GRUGEON S, KIM H, et al. Comprehensive insights into the reactivity of electrolytes based on sodium ions[J]. ChemSusChem, 2016, 9(5): 462-471. |
16 | SAMUEL W, HURLBUTT K, PASTA M. A new solid-state sodium-metal battery[J]. Chem, 2018, 4: 661-670. |
17 | FONDARD J, IRISARRI E, COURREGES C, et al. SEI composition on hard carbon in Na-ion batteries after long cycling: influence of salts (NaPF6, NaTFSI) and additives (FEC, DMCF)[J]. Journal of the Electrochemical Society, 2020, 167(7): doi: 10.1149/1945-7111/ab75fd. |
18 | KIM J H, JEONG S K. Interfacial reactions between graphite and propylene carbonate-based solution after pre-generating a solid electrolyte interface[J]. Materials Research Innovations, 2015, 19: doi: 10.1179/1432891715Z.0000000001406. |
19 | YU Y, CHE H, YANG X, et al. Non-flammable organic electrolyte for sodium-ion batteries[J]. Electrochemistry Communications, 2020, 110: doi: 10.1016/j.elecom.2019.106635. |
20 | JIANG X, LIU X, ZENG Z, et al. A nonflammable Na+-based dual-carbon battery with low-cost, high voltage, and long cycle life[J]. Advanced Energy Materials, 2018, 8(36): doi: 10.1002/aenm.201802176. |
21 | ZENG Z, JIANG X, YUAN D, et al. A safer sodium-ion battery based on nonflammable organic phosphate electrolyte[J]. Advanced Science, 2016, 3(9): doi: 10.1002/advs.201600066. |
22 | LIU X, JIANG X, ZHONG F, et al. High-safety symmetric sodium-ion batteries based on nonflammable phosphate electrolyte and double Na3V2(PO4)3 electrodes[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 27833-27838. |
23 | JIANG X, ZENG Z, XIAO L, et al. An all-phosphate and zero-strain sodium-ion battery based on Na3V2(PO4)3 cathode, NaTi2(PO4)3 anode, and trimethyl phosphate electrolyte with intrinsic safety and long lifespan[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43733-43738. |
24 | FENG J, AN Y, CI L, et al. Nonflammable electrolyte for safer non-aqueous sodium batteries[J]. Journal of Materials Chemistry A, 2015, 3(28): 14539-14544. |
25 | ZENG Z, MURUGESAN V, HAN K S, et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 3(8): 674-681. |
26 | LIU X, JIANG X, ZENG Z, et al. High capacity and cycle-stable hard carbon anode for nonflammable sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38141-38150. |
27 | CAO R, MISHRA K, LI X, et al. Enabling room temperature sodium metal batteries[J]. Nano Energy, 2016, 30: 825-830. |
28 | GENG C, BUCHHOLZ D, KIM G, et al. Influence of salt concentration on the properties of sodium‐based electrolytes[J]. Small Methods, 2018, 3(4): doi: 10.1002/smtd.201800208. |
29 | LEE M H, KIM S J, CHANG D, et al. Toward a low-cost high-voltage sodium aqueous rechargeable battery[J]. Materials Today, 2019, 29: 26-36. |
30 | MARR P C, MARR A C. Ionic liquid gel materials: Applications in green and sustainable chemistry[J]. Green Chemistry, 2016, 18, doi: 10.1039/c5gc02277k. |
31 | YANG Q, ZHANG Z, SUN X, et al. Ionic liquids and derived materials for lithium and sodium batteries[J]. Chemical Society Reviews, 2018, 47(6): 2020-2064. |
32 | WU F, ZHU N, BAI Y, et al. Highly safe ionic liquid electrolytes for sodium-ion battery: Wide electrochemical window and good thermal stability[J]. ACS Applied Materials & Interfaces, 2016, 8(33): 21381-21386. |
33 | BRUTTI S, NAVARRA M, MARESCA G, et al. Ionic liquid electrolytes for room temperature sodium battery systems[J]. Electrochimica Acta, 2019, 306: 317-326. |
34 | LIU Y, FANG X, ZHANG A, et al. Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification[J]. Nano Energy, 2016, 27: 27-34. |
35 | WU T, WEN Z Y, SUN C Z, et al. Disordered carbon tubes based on cotton cloth for modulating interface impedance in β''-Al2O3-based solid- state sodium metal batteries[J]. Journal of Materials Chemistry A, 2018, 6(26): 12623-12629. |
36 | GOODENOUGH J B, HONG H P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Matrials Research Bulletin, 1976, 11: 203-220. |
37 | SONG S, DUONG H, KORSUNSKY A, et al. A Na+ superionic conductor for room-temperature sodium batteries[J]. Scientific Reports, 2016, 6: doi: 10.1038/srep32330. |
38 | SMALL L J, WHEELER J S, IHLEFELD J F, et al. Enhanced alkaline stability in a hafnium-substituted NaSICON ion conductor[J]. Journal of Materials Chemistry A, 2018, 6(20): 9691-9698. |
39 | ZHANG Z, ZHANG Q, SHI J, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life[J]. Advanced Energy Materials, 2017, 7(4): doi: 10.1002/aenm.201601196. |
40 | NARAYANAN S, REID S, BUTLER S, et al. Sintering temperature, excess sodium, and phosphorous dependencies on morphology and ionic conductivity of NASICON Na3Zr2Si2PO12[J]. Solid State Ionics, 2019, 331: 22-29. |
41 | NOI K, SUZUKI K, TANIBATA N, et al. Liquid-phase sintering of highly Na+ ion conducting Na3Zr2Si2PO12 ceramics using Na3BO3 additive[J]. Journal of the American Ceramic Society, 2018, 101(3): 1255-1265. |
42 | CHEN G, YE L, ZHANG K, et al. Hyperbranched polyether boosting ionic conductivity of polymer electrolytes for all-solid-state sodium ion batteries[J]. Chemical Engineering Journal, 2020, 394: doi: 10.1016/j.cej.2020.124885. |
43 | CHEN G, BAI Y, GAO Y, et al. Inhibition of crystallization of poly(ethylene oxide) by ionic liquid: Insight into plasticizing mechanism and application for solid-state sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43252-43260. |
44 | JIANG Y X, XU J M, ZHUANG Q C, et al. A novel PEO-based composite solid-state polymer electrolyte with methyl group-functionalized SBA-15 filler for rechargeable lithium batteries[J]. Journal of Solid State Electrochemistry, 2008, 12: 353-361. |
45 | SUN H B, GUO J Z, ZHANG Y, et al. High-voltage all-solid-state Na-ion-based full cells enabled by all NASICON-structured materials[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24192-24197. |
46 | NI'MAH Y L, CHENG M, CHENG J H, et al. Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries[J]. Journal of Power Sources, 2015, 278: 375-381. |
47 | YU C, GANAPATHY S, KLERK N, et al. Na-ion dynamics in tetragonal and cubic Na3PS4, a Na-ion conductor for solid state Na-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(39): 15095-15105. |
48 | RAO R P, CHEN H, WONG L L, et al. Na3+xMxP1–xS4 (M=Ge4+, Ti4+, Sn4+) enables high rate all-solid-state Na-ion batteries Na2+2δFe2-δ(SO4)3|Na3+xMxP1-xS4|Na2Ti3O7[J]. Journal of Materials Chemistry A, 2017, 5(7): 3377-3388. |
49 | TANIBATA N, NOI K, HAYASHI A, et al. Preparation and characterization of highly sodium ion conducting Na3PS4-Na4SiS4 solid electrolytes[J]. RSC Advances, 2014, 4(33): 17120-17123. |
50 | 陈光海, 白莹, 高永晟, 等. 全固态钠离子电池硫系化合物电解质[J]. 物理化学学报, 2020, 36(5): doi: 10.3866/PKU.WHXB201905009. |
CHEN Guanghai, BAI Ying, GAO Yongsheng, et al. Chalcogenide electrolyte for all-solid-state sodium ion batteries[J]. Acta Physico-Chimica Sinica, 2020, 36(5): doi: 10.3866/PKU.WHXB201905009. | |
51 | YU Z, SHANG S, WANG D, et al. Synthesis and understanding of Na11Sn2PSe12 with enhanced ionic conductivity for all-solid-state Na-ion battery[J]. Energy Storage Materials, 2019, 17: 70-77. |
52 | SHANG S L, YU Z, WANG Y, et al. Origin of outstanding phase and moisture stability in a Na3P1-xAsxS4 superionic conductor[J]. ACS Applied Materials & Interfaces, 2017, 9(19): 16261-16269. |
53 | BIDEAU J L, VIAU L, VIOUX A. Ionogels, ionic liquid based hybrid materials[J]. Chemical Society Reviews, 2011, 40(2): 907-25. |
54 | KUMAR D, HASHMI S A. Ionic liquid based sodium ion conducting gel polymer electrolytes[J]. Solid State Ionics, 2010, 181(8/9/10): 416-423. |
55 | SONG S, KOTOBUKI M, ZHENG F, et al. A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries[J]. Journal of Materials Chemistry A, 2017, 5(14): 6424-6431. |
56 | WU F, CHEN N, CHEN R, et al. Organically modified silica-supported ionogels electrolyte for high temperature lithium-ion batteries[J]. Nano Energy, 2017, 31: 9-18. |
57 | CHEN R, QU W, QIAN J, et al. Zirconia-supported solid-state electrolytes for high-safety lithium secondary batteries in a wide temperature range[J]. Journal of Materials Chemistry A, 2017, 5(47): 24677-24685. |
58 | CHEN N, XING X, WANG L, et al. "Tai Chi" philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery[J]. Nano Energy, 2018, 47: 35-42. |
59 | LI X, ZHANG Z, YIN K, et al. Mesoporous silica/ionic liquid quasi-solid-state electrolytes and their application in lithium metal batteries[J]. Journal of Power Sources, 2015, 278: 128-132. |
60 | HAN L, WANG Z, KONG D, et al. An ordered mesoporous silica framework based electrolyte with nanowetted interfaces for solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2018, 6(43): 21280-21286. |
61 | WU J F, GUO X. Nanostructured metal-organic framework (MOF)-derived solid electrolytes realizing fast lithium ion transportation kinetics in solid-state batteries[J]. Small, 2019, 15(5): doi: 10.1002/smll.201804413. |
[1] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[2] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[3] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[4] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
[5] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[6] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[7] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[8] | Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes [J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235. |
[9] | Jianglong DU, Yiting LIN, Wenqi YANG, Cheng LIAN, Honglai LIU. Application of simulation in thermal safety design of lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 866-877. |
[10] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[11] | Zhuoheng XIE, Ziyang WANG, Gang ZHANG, Zhenning GU, Xiaolong SHI, Bin YAO. Experimental study on fire extinguishing of large-capacity ternary lithium-ion battery by perfluorohexanone and water mist fire extinguishing device [J]. Energy Storage Science and Technology, 2022, 11(2): 652-659. |
[12] | Yue SU, Xuhua LIU, Fanglei ZENG, Yurong REN, Bencai LIN. Preparation and properties of polyvinylidene fluoride/polyvinylidene fluoride sulfonate lithium/lithium salt composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(6): 2069-2076. |
[13] | Feifei LIU, Rongqing BAO, Xianfu CHENG, Jun LI, Wu QIN, Chaofeng YANG. Review on heat dissipation methods of lithium-ion power battery for vehicles under service conditions [J]. Energy Storage Science and Technology, 2021, 10(6): 2269-2282. |
[14] | Jian TU, Xiongwen XU, Haibo HU, Yang NIE, Tao ZENG, Qiushi SUN, Hao CHENG, Jian XIE, Xinbing ZHAO. Fabrication of gel-type Li-ion batteries and their electrochemical and safety properties [J]. Energy Storage Science and Technology, 2021, 10(3): 1025-1031. |
[15] | Ke LI, Juyi MU, Yi JIN, Jiajia XU, Pengjie LIU, Qingsong WANG, Huang LI. Fire risk of lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2021, 10(3): 1177-1186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||