Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (6): 1606-1613.doi: 10.19799/j.cnki.2095-4239.2020.0148
• Energy Storage Materials and Devices • Previous Articles Next Articles
Mengdie YAN1(), Hui LI2(
), Min LING2(
), Huilin PAN1(
), Qiang ZHANG3
Received:
2020-04-19
Revised:
2020-05-14
Online:
2020-11-05
Published:
2020-10-28
Contact:
Hui LI,Min LING,Huilin PAN
E-mail:11937045@zju.edu.cn;minling@zju.edu.cn;panhuilin@zju.edu.cn
CLC Number:
Mengdie YAN, Hui LI, Min LING, Huilin PAN, Qiang ZHANG. Brief review of progress in lithium-sulfur batteries based on dissolution-deposition reactions[J]. Energy Storage Science and Technology, 2020, 9(6): 1606-1613.
1 | DANUTA H, JULIUSZ U. Electric dry cells and storage batteries: US3043896A[P]. 1962. |
2 | NOLE D A, MOSS V. Battery employing lithium-sulphur electrodes with non-aqueous electrolyte: US3532543A[P]. 1970. |
3 | MARTIN R P, DOUB W H, ROBERTS J L, et al. Electrochemical reduction of sulfur in aprotic solvents[J]. Inorganic Chemistry, 1973, 12(8): 1921-1925. |
4 | RAUH R D, SHUKER F S, MARSTON J M, et al. Formation of lithium Polysulfides in aprotic media[J]. Journal of Inorganic Nuclear Chemistry, 1977, 39(10): 1761-1766. |
5 | FARRINGTON G C, ROTH W L. Sealed lithium-solid sulfur cell: US3953231A[P]. 1976. |
6 | MIKHAYLIK Y V, AKRIDGE J R. Polysulfide shuttle study in the Li/S battery system[J]. Journal of The Electrochemical Society, 2004, 151(11): A1969-A1976. |
7 | WANG Jiulin, YANG Jun, XIE Jingying, et al. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries[J]. Advanced Materials, 2002, 14(13/14): 963-965. |
8 | YIN Lichao, WANG Jiulin, YANG Jun, et al. A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries[J]. Journal of Materials Chemistry, 2011, 21(19): 6807-6810. |
9 | WEI Shuya, MA Lin, HENDRICKSON K E, et al. Metal-sulfur battery cathodes based on PAN-sulfur composites[J]. Journal of the American Chemical Society, 2015, 137(37): 12143-12152. |
10 | JI Xiulei, Kyu Tae LEE, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506. |
11 | CAO Yuliang, LI Xiaolin, AKSAY I A, et al. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries[J]. Physical Chemistry Chemical Physics, 2011, 13(17): 7660-7665. |
12 | ZHOU Guangmin, PEI Songfeng, LI Lu, et al. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(4): 625-631. |
13 | ZHENG Guangyuan, YANG Yuan, CHA J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Letters, 2011, 11(10): 4462-4467. |
14 | GUO Juchen, XU Yunhua, WANG Chunsheng. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries[J]. Nano Letters, 2011, 11(10): 4288-4294. |
15 | SCHUSTER J, HE Guang, MANDLMEIER B, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2012, 51(15): 3591-3595. |
16 | ZHENG Jianming, TIAN Jian, WU Dangxin, et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries[J]. Nano Letters, 2014, 14(5): 2345-2352. |
17 | Zhi Wei SEH, LI Weiyang, CHA J J, et al.Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013, 4(1): 1-6. |
18 | Zhi Wei SEH, YU Jung Ho, LI Weiyang, et al. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes[J]. Nature Communications, 2014, 5(1): 1-8. |
19 | YUAN Zhe, PENG Hongjie, HOU Tingzheng, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Letters, 2016, 16(1): 519-527. |
20 | SUN Zhenhua, ZHANG Jingqi, YIN Lichang, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nature Communications, 2017, 8(1): 14627. |
21 | CUI Zhiming, ZU Chenxi, ZHOU Weidong, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced Materials, 2016, 28(32): 6926-6931. |
22 | YIN Yaxia, XIN Sen, GUO Yuguo, et al. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angewandte Chemie International Edition, 2013, 52(50): 13186-13200. |
23 | MANTHIRAM A, FU Yongzhu, CHUNG Shengheng, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787. |
24 | FU Chengyin, GUO Juchen. Challenges and current development of sulfur cathode in lithium-sulfur battery[J]. Current Opinion in Chemical Engineering, 2016, 13: 53-62. |
25 | PANG Quan, LIANG Xiao, KWOK Chun Yuen, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy, 2016, 1(9): 1-11. |
26 | WANG Qiang, ZHENG Jianming, WALTER E, et al. Direct observation of sulfur radicals as reaction media in lithium sulfur batteries[J]. Journal of the Electrochemical Society, 2015, 162(3): A474-A478. |
27 | ZOU Qingli, LU Yichun. Solvent-dictated lithium sulfur redox reactions: an operando UV-vis spectroscopic study[J]. The Journal of Physical Chemistry Letters, 2016, 7(8): 1518-1525. |
28 | RAJPUT N N, MURUGESAN V, SHIN Yongwoo, et al. Elucidating the Solvation structure and dynamics of lithium polysulfides resulting from competitive salt and solvent interactions[J]. Chemistry of Materials, 2017, 29(8): 3375-3379. |
29 | WANG Hui, ADAMS B D, PAN Huilin, et al. Tailored reaction route by micropore confinement for Li-S batteries operating under lean electrolyte conditions[J]. Advanced Energy Materials, 2018, 8(21): 1800590. |
30 | SONG Yingze, CAI Wenlong, KONG Long, et al. Rationalizing electrocatalysis of Li-S chemistry by mediator design: Progress and prospects[J]. Advanced Energy Materials, 2020, 10(11): 1901075. |
31 | XIAO Lifen, CAO Yuliang, XIAO Jie, et al. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life[J]. Advanced Materials, 2012, 24(9): 1176-1181. |
32 | Zhi Wei SEH, LI Weiyang, CHA J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013, 4(1): 1331. |
33 | LIANG Xiao, GARSUCH A, NAZAR L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2015, 54(13): 3907-3911. |
34 | HAGEN M, HANSELMANN D, AHLBRECHT K, et al. Lithium-sulfur cells: The gap between the state-of-the-art and the requirements for high energy battery cells[J]. Advanced Energy Materials, 2015, 5(16): 1401986. |
35 | Dongping LYU, ZHENG Jianming, LI Qiuyan, et al. High energy density lithium-sulfur batteries: Challenges of thick sulfur cathodes[J]. Advanced Energy Materials, 2015, 5(16): 1402290. |
36 | EROGLU D, ZAVADIL K R, GALLAGHER K G. Critical link between materials chemistry and cell-level design for high energy density and low cost lithium-sulfur transportation battery[J]. Journal of The Electrochemical Society, 2015, 162(6): A982-A990. |
37 | Dongping LYU, LI Qiuyan, LIU Jian, et al. Enabling high-energy-density cathode for lithium-sulfur batteries[J]. ACS Applied Materials Interfaces, 2018, 10(27): 23094-23102. |
38 | GAO Han, WU Qiang, HU Yixin, et al. Revealing the rate-limiting Li-ion diffusion pathway in ultrathick electrodes for Li-ion batteries[J]. The Journal of Physical Chemistry Letters, 2018, 9(17): 5100-5104. |
39 | DÖRFLER S, ALTHUES H, HÄRTEL P, et al. Challenges and key parameters of lithium-sulfur batteries on pouch cell level[J]. Joule, 2020, 4(3): 539-554. |
40 | CHENG Xinbing, YAN Chong, HUANG Jiaqi, et al. The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection[J]. Energy Storage Materials, 2017, 6: 18-25. |
41 | ZHU Kunlei, WANG Chao, CHI Zixiang, et al. How far away are lithium-sulfur batteries from commercialization?[J]. Frontiers in Energy Research, 2019, 7: 123. |
42 | CHEN Junzheng, HENDERSON W A, PAN Huilin, et al. Improving lithium-sulfur battery performance under lean electrolyte through nanoscale confinement in soft swellable gels[J]. Nano Letters, 2017, 17(5): 3061-3067. |
43 | PANG Quan, LIANG Xiao, KWOK Chun Yuen, et al. A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density[J]. Advanced Energy Materials, 2017, 7(6): 1601630. |
44 | FANG Ruopian, ZHAO Shiyong, HOU Pengxiang, et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. Advanced Materials, 2016, 28(17): 3374-3382. |
45 | CHENG Lei, CURTISS L A, ZAVADIL K R, et al. Sparingly solvating electrolytes for high energy density lithium-sulfur batteries[J]. ACS Energy Letters, 2016, 1(3): 503-509. |
46 | PENG Hongjie, HUANG Jiaqi, CHENG Xinbing, et al. Review on high-loading and high-energy lithium-sulfur batteries[J] Advanced Energy Materials, 2017, 7(24): 1700260. |
47 | CHUNG Sheng Heng, CHANG Chi Hao, MANTHIRAM A. Progress on the critical parameters for lithium-sulfur batteries to be practically viable[J]. Advanced Functional Materials, 2018, 28(28): 1801188. |
48 | PAN Huilin, CHEN Junzheng, CAO Ruiguo, et al. Non-encapsulation approach for high-performance Li-S batteries through controlled nucleation and growth[J]. Nature Energy, 2017, 2(10): 813-820. |
49 | KONG Long, JIN Qi, HUANG Jiaqi, et al. Nonuniform redistribution of sulfur and lithium upon cycling: probing the origin of capacity fading in lithium-sulfur pouch cells[J]. Energy Technology, 2019, 7(12): 1900111. |
50 | KONG Long, JIN Qi, ZHANG Xitian, et al. Towards full demonstration of high areal loading sulfur cathode in lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2019, 39: 17-22. |
51 | LIU Jun, BAO Zhenan, CUI Yi, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186. |
52 | PAN Huilin, HAN Kee Sung, ENGELHARD M H, et al. Addressing passivation in lithium-sulfur battery under lean electrolyte condition[J]. Advanced Functional Materials, 2018, 28(38): 1707234. |
53 | NIU Chaojiang, Hongkyung LEE, CHEN Shuru, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nature Energy, 2019, 4(7): 551-559. |
54 | NIU Chaojiang, PAN Huilin, XU Wu, et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions[J]. Nature Nanotechnology, 2019, 14(6): 594. |
[1] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[2] | Kang PENG, Junmin LIU, Gonggen TANG, Zhengjin YANG, Tongwen XU. Status and prospects of organic eletroactive species for aqueous organic redox flow batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1246-1263. |
[3] | Wenting JIN, Mansheng LIAO, Ji HUANG, Zidong WEI. The technological trend of high energy density Li-ion batteries for vehicles [J]. Energy Storage Science and Technology, 2022, 11(1): 350-358. |
[4] | Yongli HENG, Zhenyi GU, Jinzhi GUO, Xinglong WU. Na3V2(PO4)3@C cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 938-944. |
[5] | Xinxin ZHU, Wei JIANG, Zhengwei WAN, Shu ZHAO, Zeheng LI, Liguang WANG, Wenbin NI, Min LING, Chengdu LIANG. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 848-862. |
[6] | Min'an YANG, Ning CHEN, Bo WANG, Qian ZHANG, Jingpei CHEN, Hailei ZHAO, Fushen LI. Gene law about cycle stability of cathode material for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(2): 462-469. |
[7] | Bin FAN, Chenglong JIANG, Chunjing LIN, Yupeng LI, Bayi YU, Jinjie ZHANG, Liang ZHANG, Mengyang GAO, Wei WANG, Kun XIE, Hong CHANG. Experimental study on the cycle life of electric vehicle battery systems [J]. Energy Storage Science and Technology, 2021, 10(2): 671-678. |
[8] | Yun LU, Jianing LIANG, Yong ZHU, Zhengrong LI, Yezhou HU, Ke CHEN, Deli WANG. Recent progress in organics derived cathode materials for lithium sulfur batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1454-1466. |
[9] | HUANG Weiguo, WANG Pengwei, CHEN Li, XU Zhibin, ZHOU Zhixue, LIU Xiaowei, WANG Qingshan, LI Yan. Study on the effect of electrode lugs arrangement on the performance of AGM lead-carbon batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1060-1065. |
[10] |
ZOU Jian, WANG Bojun, YANG Jiachao, NIU Xiaobin, WANG Liping.
Electrochemical performance of β-Li0.3V2O5 as a lithium-ion battery cathode material
[J]. Energy Storage Science and Technology, 2020, 9(2): 353-360.
|
[11] | LIU Shiqiang, WANG Fang, MA Tianyi, LIN Chunjing, BAI Guangli, WEI Zhen, CHEN Liduo. Cycle life test and analysis of lithium iron phosphate based traction batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 638-644. |
[12] | XUE Yawen, XIE Mengru, LI Jindong, XIONG Rui, YUAN Du, GUO Zhigang, DENG Chengzhi, WU Xu. Recent progresses and prospects of lead redox flow battery [J]. Energy Storage Science and Technology, 2019, 8(6): 1096-1106. |
[13] | CHEN Liduo, JI Dengyue, XU Yue, ZHANG Jinjie, MA Tianyi, WEI Mohan. Research and characterization of pulse charging strategy for lithium-ion traction battery [J]. Energy Storage Science and Technology, 2019, 8(6): 1182-1189. |
[14] | CHEN Liduo, MA Tianyi, MA Xu, JI Dengyue, SUN Zhipeng, ZHANG Dongying. The corresponding relationship of cycle life for LIB from three-dimensional [J]. Energy Storage Science and Technology, 2019, 8(5): 843-849. |
[15] | ZHANG Yonglong, XIA Huiling, LIN Jiu, CHEN Shaojie, XU Xiaoxiong. Brief analysis the safety of solid-state lithium ion batteries [J]. Energy Storage Science and Technology, 2018, 7(6): 994-1002. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||