Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (6): 1961-1968.doi: 10.19799/j.cnki.2095-4239.2020.0154
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Received:
2020-04-22
Revised:
2020-05-18
Online:
2020-11-05
Published:
2020-10-28
Contact:
Hua WEN
E-mail:329016738@qq.com;wenhua@ncu.edu.cn
CLC Number:
Changming DING, Hua WEN. Multi-objective thermal optimization of ternary lithium-ion battery[J]. Energy Storage Science and Technology, 2020, 9(6): 1961-1968.
Table 1
Parameters used in simulation"
参数 | 单位 | 正极 | 隔膜 | 负极 | 其余 | 描述 |
---|---|---|---|---|---|---|
L | μm | 90① | 20① | 60① | 厚度 | |
Rp | μm | 3.5① | 6① | 活性颗粒粒子半径 | ||
ε1 | 0.56② | 0.44② | 固相体积分数 | |||
ε2 | 0.5556② | 0.4② | 0.4444② | 液相体积分数 | ||
c1,max | mol/m3 | 19102② | 36100② | 最大可嵌锂浓度 | ||
c2,0 | mol/m3 | 1200② | 1200② | 1200① | 初始电解液锂浓度 | |
k0 | m/s | 4.38×10-11③ | 1.63×10-11③ | 反应速率常数 | ||
H×W×L | mm | 342×109.5×9.5① | 电池长×宽×厚 | |||
THb | mm | 0.3① | 0.2① | 极耳厚度 | ||
Lb | mm | 16① | 16① | 极耳长度 | ||
Wb | mm | 50① | 45① | 极耳宽度 | ||
cpa | J/(kg·K) | 1299.4① | 电芯平均比热容 | |||
cpb | J/(kg·K) | 900① | 385① | 极耳比热容 | ||
λa | W/(m·K) | 1.2827② | 电芯平均热导率 | |||
λb | W/(m·K) | 238② | 400② | 极耳热导率 |
Table 4
Local sensitivity"
实验因素 | 温升p值 | 显著性 | 温差p值 | 显著性 |
---|---|---|---|---|
A(正极厚度) | <0.0001 | 极其显著 | <0.0001 | 极其显著 |
B(极板宽度) | <0.0001 | 极其显著 | 0.4326 | |
C(正极极耳厚度) | <0.0001 | 极其显著 | 0.1331 | |
D(正极极耳宽度) | 0.0037 | 极其显著 | 0.4960 | |
E(负极极耳厚度) | 0.0021 | 极其显著 | 0.2772 | |
F(负极极耳宽度) | <0.0001 | 极其显著 | 0.0623 | |
AB | 0.0031 | 极其显著 | 0.9684 | |
AC | 0.0009 | 极其显著 | 0.0292 | 显著 |
AD | 0.4102 | 0.9823 | ||
AE | 0.1055 | 0.3880 | ||
AF | <0.0001 | 极其显著 | 0.0088 | 极其显著 |
BC | 0.9222 | 0.8661 | ||
BD | 0.6964 | 0.9646 | ||
BE | 0.8901 | 0.7789 | ||
BF | 0.2878 | 0.8089 | ||
CD | 0.0875 | 0.5649 | ||
CE | 1.0000 | 0.3988 | ||
CF | <0.0001 | 极其显著 | 0.0100 | 极其显著 |
DE | 0.9222 | 0.8547 | ||
DF | 0.0592 | 0.4580 | ||
EF | 0.0875 | 0.4200 |
1 | ARAI J, YAMAKI T, YAMAUCHI S, et al. Development of a high power lithium secondary battery for hybrid electric vehicles[J]. Journal of Power Sources, 2005, 146(1): 788-792. |
2 | SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430. |
3 | WANG Jiajun, SUN Xueliang. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(1): 5163-5185. |
4 | LU Languang, HAN Xuebing, LI Jianqiu, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
5 | KIM U S, SHIN C B, KIM C S. Modeling for the scale-up of a lithium-ion polymer battery[J]. Journal of Power Sources, 2009, 189(1): 841-846. |
6 | KIM U S, YI J, SHIN C B, et al. Modelling the thermal behaviour of a lithium-ion battery during charge[J]. Journal of Power Sources, 2011, 196(11): 5115-5121. |
7 | GUO M, KIM G H, WHITE R E. A three-dimensional multi-physics model for a Li-ion battery[J]. Journal of Power Sources, 2013, 240: 80-94. |
8 | LI Jie, CHENG Yun, AI Lihua, et al. 3D simulation on the internal distributed properties of lithium-ion battery with planar tabbed configuration[J]. Journal of Power Sources, 2015, 293: 993-1005. |
9 | WEI Zhongbao, LIM T M, SKYLLAS-KAZACOS M, et al. Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery[J]. Applied Energy, 2016, 172: 169-179. |
10 | 史玉军. 车用锂离子电池热分析[D]. 昆明: 昆明理工大学, 2017. |
SHI Yujun. Thermal analysis of lithium ion battery for vehicle[D]. Kunming: Kunming University of Science and Technology, 2017. | |
11 | 张立军, 李文博, 程洪正. 三维锂离子单电池电化学-热耦合模型[J]. 电源技术, 2016, 40(7): 1362-1366. |
ZHANG Lijun, LI Wenbo, CHENG Hongzheng. Coupled thermal-electrochemical model of 3D lithium-ion battery[J]. Chinese Journal of Power Sources, 2016, 40(7): 1362-1366. | |
12 | 张志超, 郑莉莉, 杜光超, 等. 基于多尺度锂离子电池电化学及热行为仿真实验研究[J]. 储能科学与技术, 2020, 9(1): 124-130. |
ZHANG Zhichao, DENG Lili, DU Guangchao, et al. Electrochemical and thermal behavior simulation experiments based on multiscale lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(1): 124-130. | |
13 | 张剑波, 吴彬, 李哲. 车用动力锂离子电池热模拟与热设计的研发状况与展望[J]. 集成技术, 2014(1): 18-26. |
ZHANG Jianbo, WU Bin, LI Zhe. Thermal modeling and thermal design of lithium-ion batteries for automotive application: status and prospects[J]. Journal of Integration Technology, 2014(1): 18-26. | |
14 | LI Huanhuan, LIU Chengyang, SAINI A, et al. Coupling multi-physics simulation and response surface methodology for the thermal optimization of ternary prismatic lithium-ion battery[J]. Journal of Power Sources, 2019, 438: 226974. |
15 | 鲁淑霞, 张罗幻, 蔡莲香, 等. 带有方差减小的加权零阶随机梯度下降算法[J]. 河北大学学报(自然科学版), 2019, 39(5): 536-546. |
LU Shuxia, ZHANG Luohuan, CAI Lianxiang, et al. Weighted zeroth-order stochastic gradient descent algorithm with variance reduction[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(5): 536-546. | |
16 | 崔伟. 某重型汽车车架多目标拓扑优化设计及其有限元分析[D]. 长沙: 湖南大学, 2012. |
CUI Wei. Multi-objective topology optimization and finite element analysis to a heavy automobile frame [D]. Changsha: Hunan University, 2012. | |
17 | ONDA K, OHSHIMA T, NAKAYAMA M, et al. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles[J]. Journal of Power Sources, 2006, 158(1): 535-542. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[6] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[7] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[8] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[9] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[10] | Shuai HAN, Leping SUN, Jianbin LU, Xiaoxuan GUO. Multi-objective optimal dispatch strategy of gas-electric interconnected virtual power plant interval with electric vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1428-1436. |
[11] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[12] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[13] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[14] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[15] | Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||