Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (1): 218-228.doi: 10.19799/j.cnki.2095-4239.2020.0269
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Huiyong XU1,2(), Yuanhong LI2, Zhiping ZHANG2, Yafei FAN2(), Renzong HU1()
Received:
2020-08-18
Revised:
2020-09-12
Online:
2021-01-05
Published:
2021-01-08
Contact:
Yafei FAN,Renzong HU
E-mail:1164372732@qq.com;Yafei.fan@hotmail.com;msrenzonghu@scut.edu.cn
CLC Number:
Huiyong XU, Yuanhong LI, Zhiping ZHANG, Yafei FAN, Renzong HU. Thermal runaway characteristics of pouch cells with SiOx/graphite anodes for electric vehicles under a nail penetration test[J]. Energy Storage Science and Technology, 2021, 10(1): 218-228.
Table 2
Heat released at different SOC"
体系-SOC | starTnail/℃ | maxTnail/℃ | Mbattery/g | 热失控总放热/J | 单位容量放热/J |
---|---|---|---|---|---|
Si/100%SOC | 23.1 | 1181.1 | 304.2 | 373388.7 | 14935.5 |
Si/50%SOC | 27.5 | 591.3 | 303.7 | 181499.6 | 14520.0 |
Si/25%SOC | 27.5 | 228.2 | 302.8 | 64429.0 | 10308.6 |
Si/10%SOC | 26.9 | 67.6 | 303.2 | 13059.2 | 5223.7 |
C/100%SOC | 25.4 | 1195.4 | 338.5 | 419795.7 | 16791.8 |
C/50%SOC | 25.7 | 300.0 | 342.3 | 99526.5 | 7962.1 |
C/25%SOC | 27.3 | 139.3 | 341.7 | 40554.6 | 6488.7 |
C/10%SOC | 25.6 | 79.5 | 342.0 | 19551.9 | 7820.8 |
Table 3
The weight loss of batteries at different SOC"
项目 | 100% SOC | 50% SOC | 25% SOC | 10% SOC | ||||
---|---|---|---|---|---|---|---|---|
Si | C | Si | C | Si | C | Si | C | |
电池初始质量/g | 305.0 | 337.7 | 302.4 | 342.2 | 302.7 | 341.7 | 303.1 | 341.8 |
302.9 | 339.4 | 307.2 | 342.8 | 303.1 | 341.9 | 303.6 | 344.1 | |
304.7 | 338.4 | 301.4 | 341.8 | 302.5 | 341.4 | 302.9 | 340.1 | |
平均值/g | 304.2 | 338.5 | 303.7 | 342.3 | 302.8 | 341.7 | 303.2 | 342.0 |
热失控后质量/g | 78.2 | 148.7 | 192.5 | 252.0 | 217.1 | 284.0 | 249.4 | 334.8 |
76.3 | 145.0 | 193.0 | 238.4 | 227.1 | 283.5 | 300 | 333.3 | |
72.2 | 166.0 | 199.4 | 252 | 213.3 | 283.4 | 299.1 | 331.1 | |
平均值/g | 75.6 | 153.2 | 195.0 | 247.5 | 219.2 | 283.6 | 282.8 | 333.1 |
损失质量/g | 226.8 | 189.0 | 109.9 | 90.2 | 85.6 | 57.7 | 53.7 | 7.0 |
226.6 | 194.4 | 114.2 | 104.4 | 76.0 | 58.4 | 3.6 | 10.8 | |
232.5 | 172.4 | 102.0 | 89.8 | 89.2 | 58.0 | 3.8 | 9.0 | |
平均值/g | 228.6 | 185.3 | 108.7 | 94.8 | 83.6 | 58.0 | 20.4 | 8.9 |
失重比/% | 74.4 | 56.0 | 36.3 | 26.4 | 28.3 | 16.9 | 17.7 | 2.0 |
74.8 | 57.3 | 37.2 | 30.5 | 25.1 | 17.1 | 1.2 | 3.1 | |
76.3 | 50.9 | 33.8 | 26.3 | 29.5 | 17.0 | 1.3 | 2.6 | |
平均值/% | 75.2 | 54.7 | 35.8 | 27.7 | 27.6 | 17.0 | 6.7 | 2.6 |
1 | 张亚军, 王贺武, 冯旭宁, 等. 动力锂离子电池热失控燃烧特性研究进展[J]. 机械工程学报, 2019, 55(20): 17-27. |
ZHANG Yajun, WANG Hewu, FENG Xuning, et al. Research prograss on thermal runaway combusion characteristics of power lithiumion batteries[J]. Journal of Mechnical Engineering, 2019, 55(20): 17-27. | |
2 | 许辉勇, 范亚飞, 张志萍, 等. 针刺和挤压作用下动力电池热失控特性与机理综述[J]. 储能科学与技术, 2020, 9(4): 1113-1126. |
XU Huiyong, FAN Yaping, ZHANG Zhiping, et al. Thermal runaway characteristics and mechanisms of Li-ion batteries for electric vehicles under nail penetration and crush[J]. Energy Storage Science and Technology, 2020, 9(4): 1113-1126. | |
3 | DIEKMANN Jan, DOOSE Stefan, WEBER Svenja, et al. Development of a new procedure for nail penetration of lithium-ion cells to obtain meaningful and reproducible results[J]. Journal of the Electrochemical Society, 2020, 167(9): doi: 10.1149/1945-7111/ab78ff. |
4 | HUANG Shan, DU Xiaoniu, RICHTER Mark, et al. Understanding Li-ion cell internal short circuit and thermal runaway through small, slow and in situ sensing nail penetration[J]. Journal of the Electrochemical Society, 2020, 167(9): doi: 10.1149/1945-7111/ab8878. |
5 | LIANG Guozhou, ZHANG Yiming, HAN Qi, et al. A novel 3D-layered electrochemical-thermal coupled model strategy for the nail-penetration process simulation[J]. Journal of Power Sources, 2017, 342: 836-845. |
6 | 张景涵, 曹冬冬, 门靖宇, 等. 基于锂电池包针刺实验的热失控扩散时间预测[J]. 电源技术, 2019, 43(10): 1649-1652. |
7 | LI Hang, KONG Xiangbang, LIU Chaoyue, et al. Study on thermal stability of nickel-rich/silicon-graphite large capacity lithium ion battery[J]. Applied Thermal Engineering, 2019, 161: doi: 10.1016/j.applthermaleng.2019.114144. |
8 | FENG Xuning, ZHENG Siqi, REN Dongsheng, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. |
9 | 张明杰, 杨凯, 段舒宁, 等. 高能量密度镍钴铝酸锂/钛酸锂电池体系的热稳定性研究[J]. 高电压技术, 2017, 43(7): 2221-2228. |
ZHANG Mingjie, YANG Kai, DUAN Shuning, et al. Thermal stability of high energy density LiNi0.815Co0.15Al0.035O2/Li4Ti5O12 battery[J]. High Voltege Engineering, 2017, 43(7): 2221-2228. | |
10 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车用动力蓄电池安全要求: GB/T 31485—2015[S]. 北京: 中国标准出版社, 2015. |
11 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车用锂离子动力蓄电池包和系统第3部分:安全性要求与测试方法:GB/T 31467.3—2015[S]. 北京: 中国标准出版社, 2015. |
12 | 侯奥林. 高镍三元正极材料的制备及改性研究[D]. 郑州: 郑州大学, 2019. |
13 | 中华人民共和国国家市场监督管理总局, 中国国家标准化管理委员会. 电动汽车用动力蓄电池安全要求: GB 38031, 2020[S]. 北京: 中国标准出版社, 2020. |
14 | KIM Jinyong, MALLARAPU Anudeep, SANTHANAGOPALAN Shriram. Transport processes in a Li-ion cell during an internal short-circuit[J]. Journal of the Electrochemical Society, 2020, 167(9):doi:10.1149/1945-7111/ab995d. |
15 | GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Adv, 2014, 4(7): 3633-3642. |
16 | HARRIS S J, TIMMONS A, PITZ W J. A combustion chemistry analysis of carbonate solvents used in Li-ion batteries[J]. Journal of Power Sources, 2009, 193(2): 855-858. |
17 | FENG Xuning, OUYANG Minggao, LIU Xiang, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
18 | YAMANO A, MORISHITA M, YANAGIDA M, et al. High-capacity Li-ion batteries using SiO-Si composite anode and li-rich layered oxide cathode: Cell design and its safety evaluation[J]. Journal of the Electrochemical Society, 2015, 162(9): A1730-A1737. |
19 | LU Tienyuan, CHIANG Chungcheng, WU Shenghung, et al. Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter[J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(3): 1083-1088. |
20 | LIU X, STOLIAROV S I, DENLINGER M, et al. Comprehensive calorimetry of the thermally-induced failure of a lithium ion battery[J]. Journal of Power Sources, 2015, 280: 516-525. |
21 | RÖDER P, STIASZNY B, ZIEGLER J C, et al. The impact of calendar aging on the thermal stability of a LiMn2O4-Li(Ni1/3Mn1/3Co1/3)O2/graphite lithium-ion cell[J]. Journal of Power Sources, 2014, 268: 315-325. |
22 | WALKER W Q, DARST J J, FINEGAN D P, et al. Decoupling of heat generated from ejected and non-ejected contents of 18650-format lithium-ion cells using statistical methods[J]. Journal of Power Sources, 2019, 344: 207-218. |
23 | BAK S M, NAM K W, CHANG W, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials[J]. Chemistry of Materials, 2013, 25(3): 337-351. |
24 | SHARIFI-ASL Soroosh, LU Jun, AMINE Khalil, et al. Oxygen release degradation in Li-ion battery cathode materials: Mechanisms and mitigating approaches[J]. Advanced Energy Materials, 2019, 9(22): doi: 10.1002/aenm.201900551. |
25 | 吴唐琴. 锂离子电池产热和热诱导失控特性实验研究[D]. 合肥: 中国科学技术大学, 2018. |
WU Tangqin. Experimental study on heat generation and thermal induced runaway of lithium-ion battery[J]. Hefei: University of Scicence and Technology of China, 2018. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[6] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[7] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
[8] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[9] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[10] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[11] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[12] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[13] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[14] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[15] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||