1 |
ZAKARIA Z, KAMARUDIN S K, ABD WAHID K A, et al. The progress of fuel cell for malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system[J]. Renewable and Sustainable Energy Reviews, 2021, 144: 110984.
|
2 |
BIANCO M, OUWELTJES J P, VAN HERLE J. Degradation analysis of commercial interconnect materials for solid oxide fuel cells in stacks operated up to 18000 hours[J]. International Journal of Hydrogen Energy, 2019, 44(59): 31406-31422.
|
3 |
郑莉莉. Nb、Ta或W固溶改性的Ti3SiC2作为新型SOFC连接体材料的性能研究[D]. 北京: 中国科学院大学, 2013.ZHENG L L. Investigation on the properties of Nb, Ta or W doped Ti3SiC2 as a novel interconnect material for IT-SOFC [D]. Beijing: University of Chinese Academy of Sciences, 2013.
|
4 |
TANAKA T, KAMIKO H, AKIBA K, et al. Energetic analyses of installing SOFC co-generation systems with EV charging equipment in Japanese cafeteria[J]. Energy Conversion and Management, 2017, 153: 435-445.
|
5 |
LAI K, KOEPPEL B J, CHOI K S, et al. A quasi-two-dimensional electrochemistry modeling tool for planar solid oxide fuel cell stacks[J]. Journal of Power Sources, 2011, 196(6): 3204-3222.
|
6 |
HASSAN M A, MAMAT O B, MEHDI M. Review: Influence of alloy addition and spinel coatings on Cr-based metallic interconnects of solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(46): 25191-25209.
|
7 |
丁锡锋, 高凌, 陈涵, 等. LaCrO3基陶瓷材料在SOFC中的研究进展[J]. 材料导报, 2006, 20(9): 29-33.
|
|
DING X F, GAO L, CHEN H, et al. Recent research progress of LaCrO3 in solid oxide fuel cell[J]. Materials Review, 2006, 20(9): 29-33.
|
8 |
ZHENG Lili, LI Xichao, GUAN Wanbing, et al. Oxidation behavior and electrical conductivity of MAXs phase (Ti,Nb)3SiC2 as a novel intermediate-temperature solid oxide fuel cell interconnect material in anode environment[J]. International Journal of Hydrogen Energy, 2021, 46(14): 9503-9513.
|
9 |
蔡政坤, 孙红亮, 陈志元, 等. 铬酸镧材料的制备、性能及应用研究[J]. 硅酸盐通报, 2020, 39(6): 1892-1901,1929.
|
|
CAI Z K, SUN H L, CHEN Z Y, et al. Study on preparation, properties and application of lanthanum chromate[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1892-1901,1929.
|
10 |
CHEN Xu, ZHANG Shanlin, LI Chengxin, et al. Optimization of plasma-sprayed lanthanum chromite interconnector through powder design and critical process parameters control[J]. Journal of Thermal Spray Technology, 2020, 29(1/2): 212-222.
|
11 |
高彬. SOFC合金连接体Y掺杂CuMn2O4涂层制备工艺研究[D]. 西安: 长安大学, 2019.GAO B. The research of preparation processes of Y-doped CuMn2O4 coating for SOFC alloy interconnect[D]. Xi'an:Chang'an University, 2019.
|
12 |
郑海忠, 鲁世强. Al、Si及Y多元合金化对Cr-20Nb合金高温氧化行为的影响[J]. 稀有金属材料与工程, 2011, 40(3): 433-437.
|
|
ZHENG Z H, LU S Q. Effect of Al, Si and Y multi alloying on high temperature oxidation behavior of Cr-20Nb alloy[J]. Rare Metal Materials and Engineering, 2011, 40(3): 433-437.
|
13 |
赵之彧. SOFC稀土改性Fe-Cr合金连接体NiMn2O4涂层的制备及性能研究[D]. 西安: 长安大学,2015.ZHAO Z Y. The preparation and performance study of NiMn2O4 coating on the rare earth modified Fe-Ce ferritic alloy interconnection for SOFC[D]. Xi'an: Chang'an University, 2015.
|
14 |
辛显双, 朱庆山, 刘岩. 固体氧化物燃料电池 (SOFC)合金连接体耐高温氧化导电防护涂层[J]. 表面技术, 2019, 48(1): 22-29.
|
|
XIN X S, ZHU Q S, LIU Y. Conductive protective coating with heat oxygen-resistance for solid oxide fuel cell (SOFC) alloy interconnect[J]. Surface Technology, 2019, 48(1): 22-29.
|
15 |
XIONG Chunyan, LI Wenlu, XIAO Jinhua, et al. Improved chromium-poisoning on lanthanum strontium manganite cathode in presence of a newly developed iron-chromium based interconnect alloy for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2015, 40 (40): 13957-13963.
|
16 |
SWAMINATHAN S, KO Y S, LEE Y-S, et al. Oxidation behavior and area specific resistance of La, Cu and B alloyed Fe-22Cr ferritic steels for solid oxide fuel cell interconnects[J]. Journal of Power Sources, 2017, 369: 13-26.
|
17 |
上原利弘, 安田信隆, 田中茂徳,等. 固体酸化物形燃料電池用金属インターコネクタ材の開発[J]. 電気化学, 2012, 80(3): 155-160.UEHARA T, YASUDA N, TANAKA S, et al. Development of metal interconnector for solid oxide fuel cell[J]. Electrochemistry, 2012, 80 (3): 155-160.
|
18 |
MAGRASO A, FALK-WINDISCH H, FROITZHEIM J, et al. Reduced long term electrical resistance in Ce/Co-coated ferritic stainless steel for solid oxide fuel cell metallic interconnects[J]. International Journal of Hydrogen Energy, 2015, 40(27): 8579-8585.
|
19 |
FENG Z J, XU Y X, ZENG C L. Preparation and high temperature performances of DyCrO3-based coatings on a ferritic stainless steel interconnect material[J]. Journal of Power Sources, 2013, 235: 54-61.
|
20 |
SHEN Zhengjun, RONG Ju, YU Xiaohua. Mn Co3O4 spinel coatings: controlled synthesis and high temperature oxidation resistance behavior[J]. Ceramics International, 2020, 46(5): 5821-5827.
|
21 |
ABDOLI H, MOLIN S, FARNOUSJ H. Effect of interconnect coating procedure on solid oxide fuel cell performance[J]. Materials Letters, 2020, 259: 126898.
|
22 |
SAEIDPOUR F, EBRAHIMIFAR H. Effect of nanostructure Fe-Ni-Co spinel oxides/Y2O3 coatings on the high-temperature oxidation behavior of Crofer 22 APU stainless steel interconnect[J]. Corrosion Science, 2021, 182: 109280.
|
23 |
文阁玲, 朱冬冬, 金妙, 等. SOFC连接体表面层状钙钛矿氧化物涂层研究进展[J]. 电工材料, 2016(6): 20-24.
|
|
WEN G L, ZHU D D, JIN MIAO, et al. Development of layered perovskite oxide coating on interconnector of solid oxide fuel cell stacks[J]. Electrical Engineering Materials, 2016(6): 20-24.
|
24 |
TAN Kanghuai, RAHMAN H A, TAIB H. Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Sm0.2Ce0.8O1.9carbonate perovskite coating on ferritic stainless steel interconnect for low temperature solid oxide fuel cells[J]. Materials Chemistry and Physics, 2020, 254: 123433.
|
25 |
AZNAM I, MAH J C W, MUCHTAR A, et al. Electrophoretic deposition of (Cu,Mn,Co)3O4 spinel coating on SUS430 ferritic stainless steel: process and performance evaluation for solid oxide fuel cell interconnect applications[J]. Journal of the European Ceramic Society, 2021, 41(2): 1360-1373.
|
26 |
ZHAO Qingqing, GENG Shujiang, CHEN Gang, et al. Effect of NiFe2 coating thickness on high temperature oxidation and electrical behavior of coated steel interconnect[J]. Journal of Alloys and Compounds, 2021, 858: 157746.
|
27 |
LIU Kun, XU Shuai, SHI Jiefu. Impact of different atmospheres on oxidation and electrical performance of a solid oxide fuel cell interconnect with Co-containing protective coating[J]. Energy & Fuels, 2020, 34(7): 8864-8871.
|
28 |
GOROUH A A, ZANDRAHIMI M, EBRAHIMIFAR H. Investigation of oxidation behaviour of AISI-430 steel interconnects in the presence of Ni-Co-CeO2 composite coating for application of solid oxide fuel cells[J]. Bulletin of Materials Science, 2020, 43(1): 1-12.
|
29 |
张昊. 新型陶瓷连接体材料与SOFC电极材料相容性研究[D]. 青岛: 青岛大学, 2019.
|
|
ZHANG H. Study on the compatibility of new ceramic connector materials with SOFC electrode materials[D]. Qingdao:Qingdao University, 2019.
|
30 |
QI Qian, WANG Lujie, LIU Yan, et al. Effect of TiC particles size on the oxidation resistance of TiC/hastelloy composites applied for intermediate temperature solid oxide fuel cell interconnects[J]. Journal of Alloys and Compounds, 2019, 778: 811-817.
|
31 |
张新宝, 张超, 孟凡朋, 等. 固体氧化物燃料电池的研究进展[J]. 山东陶瓷, 2021, 44(1): 9-11.
|
|
ZHANG X B, ZHANG C, MENG F P, et al. Research progress of solid oxide fuel cell[J]. Shandong Ceramics, 2021, 44(1): 9-11.
|