Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (6): 2318-2325.doi: 10.19799/j.cnki.2095-4239.2021.0242
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Jialu QIAO(), Shunli WANG(), Chunmei YU, Weihao SHI, Xiao YANG
Received:
2021-06-02
Revised:
2021-06-14
Online:
2021-11-05
Published:
2021-11-03
CLC Number:
Jialu QIAO, Shunli WANG, Chunmei YU, Weihao SHI, Xiao YANG. Novel multiple weighted-AEKF method for online state-of-charge estimation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2318-2325.
1 | 付诗意, 吕桃林, 闵凡奇, 等. 电动汽车用锂离子电池SOC估算方法综述[J]. 储能科学与术, 2021, 10(3): 1127-1136. |
FU S Y, LÜ T L, MIN F Q, et al. A review of SOC estimation methods for lithium-ion batteries for electric vehicles[J]. Energy Storage Science and Technology, 2021,10(3): 1127-1136. | |
2 | 李欢, 王顺利, 邹传云, 等. 基于Thevenin模型和自适应卡尔曼的SOC估算研究[J]. 自动化仪表, 2021, 42(1): 46-51.LI H, WANG S L, ZOU C Y, et al. SOC estimation based on Thevenin model and adaptive Kalman filter[J]. Automation Instrumentation, 2021,42(1): 46-51. |
3 | 殷福嘉. 基于RC等效电路模型的锂电池SOC估计[J]. 软件导刊, 2021, 20(1): 117-122. |
YIN F J. SOC estimation of lithium battery based on RC equivalent circuit model[J]. Software Guide, 2021, 20(1): 117-122. | |
4 | 孙鹏宇, 李建良, 陶知非, 等. 动态工况电池在线参数辨识及SOC估计研究[J]. 电子测量与仪器学报, 2021, 35(1): 10-17.SUN P Y, LI J L, TAO Z F, et al. Research on online parameter identification and SOC estimation of battery under dynamic conditions[J]. Journal of Electronic Measurement and Instrumentation, 2021,35(1): 10-17. |
5 | 熊然, 王顺利, 于春梅, 等. 基于Thevenin模型和改进扩展卡尔曼的特种机器人锂离子电池SOC估算方法[J]. 储能科学与技术, 2021, 10(2): 695-704. |
XIONG R, WANG S L, YU C M, et al. SOC estimation method of lithium ion battery for special robot based on Thevenin model and improved extended Kalman[J]. Energy Storage Science and Technology, 2021,10(2): 695-704. | |
6 | 胡洁宇, 吴松荣, 陆凡, 等. 基于奇异值分解无迹卡尔曼滤波的锂电池荷电状态估计[J]. 科学技术与工程, 2020, 20(35): 14530-14535. |
HU J Y, WU S R, LU F, et al. State of charge estimation of lithium battery based on singular value decomposition and unscented Kalman filter[J]. Science, Technology and Engineering, 2020, 20(35): 14530-14535. | |
7 | ZHANG Z Y, JIANG L, ZHANG L Z, et al. State-of-charge estimation of lithium-ion battery pack by using an adaptive extended Kalman filter for electric vehicles[J]. Journal of Energy Storage, 2021,37(2): 1-15. |
8 | DEY S, SHI Y, SMITH K, et al. From battery cell to electrodes: Real-time estimation of charge and health of individual battery electrodes[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3): 2167-2175. |
9 | 韩肄旸. 基于改进的卡尔曼滤波算法的锂电池荷电状态估计[D]. 南京: 南京邮电大学, 2020.HAN Y Y. State of charge estimation of lithium battery based on Improved Kalman filter algorithm[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020. |
10 | 宫兵, 凌六一, 何业梁, 等. 基于自适应无迹卡尔曼滤波的锂电池SOC估计[J]. 电源技术, 2020, 44(11): 1594-1599. |
GONG B, LING L Y, HE Y L, et al. SOC estimation of lithium battery based on adaptive unscented Kalman filter[J]. Chinese Journal of Power Sources, 2020, 44(11): 1594-1599. | |
11 | 王文亮, 何锋, 郑永樑, 等. 基于RLS-EKF联合算法的锂电池SOC估算[J]. 电源技术, 2020, 44(10): 1498-1501+1505. |
WANG W L, HE F, ZHENG Y L, et al. SOC estimation of lithium battery based on RLS-EKF joint algorithm[J]. Chinese Journal of Power Sources, 2020,44(10): 1498-1501+1505. | |
12 | 吕清, 党寻诣, 苏勰, 等. 提高车载锂电池SOC估算精度的方法研究[J]. 车辆与动力技术, 2020(3): 24-29. |
LÜ Q, DANG X Y, SU X, et al. Research on the method of improving SOC estimation accuracy of on-board lithium battery[J]. Vehicle and Power Technology, 2020(3): 24-29. | |
13 | 查伟民. 基于扩展卡尔曼滤波算法的二阶电池模型SOC估算[J]. 山东理工大学学报(自然科学版), 2020, 34(6): 41-45. |
ZHA W M. SOC estimation of second order battery model based on extended Kalman filter algorithm[J]. Journal of Shandong University of Sscience and Technology (Natural Science Edition), 2020, 34(6): 41-45. | |
14 | 安诺静. 基于EKF的电动汽车用锂离子电池SOC估计方法研究[D]. 西安: 长安大学, 2020.AN N J. Research on SOC estimation method of lithium ion battery for electric vehicle based on EKF[D]. Xi'an: Chang'an University, 2020. |
15 | 莫易敏, 骆聪, 熊巍, 等. 基于改进扩展卡尔曼滤波的锂电池SOC估计[J]. 电源技术, 2020, 44(6): 828-831. |
MO Y M, LUO C, XIONG W, et al. Estimation of SOC for lithium-ion battery based on improved extended Kalman filter[J]. Chinese Journal of Power Sources, 2020,44(6): 828-831. | |
16 | KAWAHARA Y, SAKABE K, NAKAO R, et al. Development of status detection method of lithium-ion rechargeable battery for hybrid electric vehicles[J]. Journal of Power Sources, 2021,481(3): doi: 10.1016/j.jpowsour.2020.228760. |
17 | 何明芳, 王顺利, 于春梅, 等. 基于改进PNGV建模的锂电池SOC估算研究[J]. 自动化仪表, 2020, 41(6): 46-51. |
HE M F, WANG S L, YU C M, et al. Research on SOC estimation of lithium batteries based on improved PNGV modeling[J]. Process Automation Instrumentation, 2020, 41(6): 46-51. | |
18 | 李叶. 储能电池荷电状态的在线估算研究[D]. 郑州: 郑州大学, 2020. |
LI Y. On line estimation of state of charge of energy storage battery[D]. Zhengzhou: Zhengzhou University, 2020. | |
19 | 郑涛, 张里, 侯杨成, 等. 基于自适应CKF的老化锂电池SOC估计[J]. 储能科学与技术, 2020, 9(4): 1193-1199. |
ZHENG T, ZHANG L, HOU Y C, et al. SOC estimation of aging lithium battery based on adaptive CKF[J]. Energy Storage Science and Technology, 2020, 9(4): 1193-1199. | |
20 | HUANG Z J, FANG Y S, XU J J. SOC estimation of Li-ion battery based on improved EKF algorithm[J]. International Journal of Automotive Technology, 2021, 22(2): 335-340. |
21 | 刘成武, 邓青, 郭小斌. 基于改进EKF算法的锂电池SOC估算[J]. 机电技术, 2020(1): 50-53+77. |
LIU C W, DENG Q, GUO X B. SOC estimation of lithium battery based on improved EKF algorithm[J]. Electromechanical Technology, 2020(1): 50-53+77. | |
22 | 蒋聪, 王顺利, 李小霞, 等. 基于改进EKF算法变温度下的动力锂电池SOC估算[J]. 储能科学与技术, 2020, 9(1): 145-151. |
JIANG C, WANG S L, LI X X, et al. Estimation method of SOC for power lithium battery based on improved EKF algorithm adaptive to various temperature[J]. Energy Storage Science and Technology, 2020, 9(1): 145-151. | |
23 | 张远进, 吴华伟, 叶从进. 基于AUKF-BP神经网络的锂电池SOC估算[J]. 储能科学与技术, 2021, 10(1): 237-241. |
ZHANG Y J, WU H W, YE C J. SOC estimation of lithium battery based on AUKF-BP neural network[J]. Energy Storage Science and Technology, 2021,10(1): 237-241. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[6] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[7] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[8] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[9] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[10] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[11] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[12] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[13] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[14] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
[15] | Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||