1 |
张天任, 鄢丽娜. 大力发展智慧型储能电站[N]. 中国煤炭报, 2021-04-15(4).
|
|
ZHANG T R, YAN L N. Vigorous development of intelligent energy storage plants[N]. China Coal News, 2021-04-15(4).
|
2 |
季迎旭, 杜海江, 孙航. 蓄电池SOC估算方法综述[J]. 电测与仪表, 2014, 51(4): 18-22.
|
|
JI Y X, DU H J, SUN H. A survey of state of charge estimation methods[J]. Electrical Measurement & Instrumentation, 2014, 51(4): 18-22.
|
3 |
苏振浩, 李晓杰, 秦晋, 等. 基于BP人工神经网络的动力电池SOC估算方法[J]. 储能科学与技术, 2019, 8(5): 868-873.
|
|
SU Z H, LI X J, QIN J, et al. SOC estimation method of power battery based on BP artificial neural network[J]. Energy Storage Science and Technology, 2019, 8(5): 868-873.
|
4 |
LEE J, NAM O, CHO B H. Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering[J]. Journal of Power Sources, 2007, 174(1): 9-15.
|
5 |
ZHANG S Z, GUO X, ZHANG X W. An improved adaptive unscented kalman filtering for state of charge online estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: 101980.
|
6 |
CHEN Z, FU Y, MI C C. State of charge estimation of lithium-ion batteries in electric drive vehicles using extended Kalman filtering[J]. IEEE Transactions on Vehicular Technology, 2012, 62(3): 1020-1030.
|
7 |
蒋聪, 王顺利, 李小霞, 等. 基于改进EKF算法变温度下的动力锂电池SOC估算[J]. 储能科学与技术, 2020, 9(1): 145-151.
|
|
JIANG C, WANG S L, LI X X, et al. Estimation method of SOC for power lithium battery based on improved EKF algorithm adaptive to various temperature[J]. Energy Storage Science and Technology, 2020, 9(1): 145-151.
|
8 |
张远进, 吴华伟, 叶从进. 基于AUKF-BP神经网络的锂电池SOC估算[J]. 储能科学与技术, 2021, 10(1): 237-241.
|
|
ZHANG Y J, WU H W, YE C J. Estimation of the SOC of a battery based on the AUKF-BP algorithm[J]. Energy Storage Science and Technology, 2021, 10(1): 237-241.
|
9 |
俞美鑫, 施卫, 蒋龙, 等. 基于GA-BP神经网络的动力锂电池SOC估算[J]. 电子技术应用, 2020, 46(1): 104-107,112.
|
|
YU M X, SHI W, JIANG L, et al. SOC estimation of power lithium battery based on GA-BP neural network[J]. Application of Electronic Technique, 2020, 46(1): 104-107, 112.
|
10 |
于仲安, 褚彪, 葛庭宇. 基于HPSO-BP神经网络融合的锂电池SOC预估研究[J]. 汽车技术, 2019(6): 20-24.
|
|
YU Z, CHU B, GE T Y. Estimation for SOC of Li-ion battery based on HPSO-BP neural network fusion[J]. Automobile Technology, 2019(6): 20-24.
|
11 |
朱元富, 贺文武, 李建兴, 等. 基于Bi-LSTM/Bi-GRU循环神经网络的锂电池SOC估计[J]. 储能科学与技术, 2021, 10(3): 1163-1176.
|
|
ZHU Y F, HE W W, LI J X, et al. SOC estimation for Li-ion batteries based on Bi-LSTM and Bi-GRU[J]. Energy Storage Science and Technology, 2021, 10(3): 1163-1176.
|
12 |
成文晶, 潘庭龙. 基于分布估计算法LSSVM的锂电池SOC预测[J]. 储能科学与技术, 2020, 9(6): 1948-1953.
|
|
CHENG W J, PAN T L. Prediction for SOC of lithium-ion batteries by estimating the distribution algorithm with LSSVM[J]. Energy Storage Science and Technology, 2020, 9(6): 1948-1953.
|
13 |
SAREMI S, MIRJALILI S, LEWIS A. Grasshopper optimisation algorithm: Theory and application[J]. Advances in Engineering Software, 2017, 15: 30-47.
|
14 |
ARORA S, ANAND P. Chaotic grasshopper optimization algorithm for global optimization[J]. Neural Computing and Applications, 2019, 31(8): 4385-4405.
|
15 |
EWEES A A, ELAZIZ M A, HOUSSEIN E H. Improved grasshopper optimization algorithm using opposition-based learning[J]. Expert Systems with Applications, 2018, 112: 156-172.
|
16 |
何正风. MATLAB R2015b神经网络技术[M]. 北京: 清华大学出版社, 2016.
|
|
HE Z F. MATLAB R2015b neural network technology[M]. Beijing: Tsinghua University Press, 2016.
|
17 |
吴忠强, 申丹丹, 尚梦瑶, 等. 基于改进蝗虫优化算法的光伏电池模型参数辨识[J]. 计量学报, 2020, 41(12): 90-97.
|
|
WU Z Q, SHEN D D, SHANG M Y, et al. Parameter identification of photovoltaic cell model based on improved grasshopper optimization algorithm[J]. Acta Metrologica Sinica, 2020, 41(12): 90-97.
|
18 |
何庆, 林杰, 徐航. 混合柯西变异和均匀分布的蝗虫优化算法[J]. 控制与决策, 2021, 36(7): 1558-1568.
|
|
HE Q, LIN J, XU H. Hybrid Cauchy mutation and uniform distribution of grasshopper optimization algorithm[J]. Control and Decision, 2021, 36(7): 1558-1568.
|
19 |
KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of ICNN'95-international conference on neural networks. IEEE, 1995, 4: 1942-1948.
|