Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (1): 297-312.doi: 10.19799/j.cnki.2095-4239.2021.0671
• Research Highlight • Previous Articles Next Articles
Mengyu TIAN(), Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG()
Received:
2021-12-15
Revised:
2021-12-17
Online:
2022-01-05
Published:
2022-01-10
Contact:
Xuejie HUANG
E-mail:tianmengyu18@mails.ucas.edu.cn;xjhuang@iphy.ac.cn
CLC Number:
Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021)[J]. Energy Storage Science and Technology, 2022, 11(1): 297-312.
1 | YANG J C, CHEN Y X, LI Y J, et al. Encouraging voltage stability upon long cycling of Li-rich Mn-based cathode materials by Ta-Mo dual doping[J]. ACS Applied Materials & Interfaces, 2021, 13(22): 25981-25992. |
2 | WEI H X, YING D H, TANG L B, et al. Lithium-rich manganese-based cathode materials with highly stable lattice and surface enabled by perovskite-type phase-compatible layer[J]. Nano Energy, 2021, 88: doi: 10.1016/j.nanoen.2021.106288. |
3 | ZHU C Q, CAO M Y, ZHANG H Y, et al. Synergistic effect of microstructure engineering and local crystal structure tuning to improve the cycling stability of Ni-rich cathodes[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48720-48729. |
4 | JI H X, BEN L B, YU H L, et al. Electrolyzed Ni(OH)2 precursor sintered with LiOH/LiNiO3 mixed salt for structurally and electrochemically stable cobalt-free LiNiO2 cathode materials[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 50965-50974. |
5 | CHIEN P H, WU X Y, SONG B H, et al. New insights into structural evolution of LiNiO2 revealed by operando neutron diffraction[J]. Batteries & Supercaps, 2021, 4(11): 1701-1707. |
6 | HYUN H, JEONG K, HONG H, et al. Suppressing high-current-induced phase separation in Ni-rich layered oxides by electrochemically manipulating dynamic lithium distribution[J]. Advanced Materials, 2021: doi: 10.1002/adma.202105337. |
7 | LUU N S, LIM J M, TORRES-CASTANEDO C G, et al. Elucidating and mitigating high-voltage interfacial chemomechanical degradation of nickel-rich lithium-ion battery cathodes via conformal graphene coating[J]. ACS Applied Energy Materials, 2021, 4(10): 11069-11079. |
8 | WATANABE T, YOKOKAWA T, YAMADA M, et al. Surface coating of a LiNixCoyAl1–x–yO2 (x>0.85) cathode with Li3PO4 for applying a water-based hybrid polymer binder during Li-ion battery preparation[J]. RSC Advances, 2021, 11(59): 37150-37161. |
9 | FAN X M, HUANG Y D, WEI H X, et al. Surface modification engineering enabling 4.6 V single-crystalline Ni-rich cathode with superior long-term cyclability[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202109421. |
10 | HERZOG M J, GAUQUELIN N, ESKEN D, et al. Increased performance improvement of lithium-ion batteries by dry powder coating of high-nickel NMC with nanostructured fumed ternary lithium metal oxides[J]. ACS Applied Energy Materials, 2021, 4(9): 8832-8848. |
11 | ARIYOSHI K, KAJIKAWA K, YAMADA Y. Synthesis and electrochemical properties of a cubic polymorph of LiNi1/2Mn1/2O2 with a spinel framework[J]. Journal of Solid State Electrochemistry, 2021: 1-11. |
12 | WU J, WANG X, LIU Q, et al. A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-021-26073-6. |
13 | CHEN D, ZHANG J, JIANG Z, et al. Role of Fluorine in chemomechanics of cation-disordered rocksalt cathodes[J]. Chemistry of Materials, 2021, 33(17): 7028-7038. |
14 | LIANG G, PETERSON V K, WU Z, et al. Crystallographic-site-specific structural engineering enables extraordinary electrochemical performance of high-voltage LiNi0.5Mn1.5O4 spinel cathodes for lithium-ion batteries[J]. Advanced Materials, 2021, 33(44): doi: 10.1002/adma.202101413. |
15 | KOBAYASHI H, YUAN G, GAMBE Y, et al. Effective Li3AlF6 surface coating for high-voltage lithium-ion battery operation[J]. ACS Applied Energy Materials, 2021, 4(9): 9866-9870. |
16 | YAMAMOTO K, YOSHINARI T, KUWABARA A, et al. Accelerated lithium ions diffusion at the interface between LiFePO4 electrode and electrolyte by surface-nitride treatment[J]. Solid State Ionics, 2021, 373: doi: 10.1016/j.ssi.2021.115792. |
17 | CASINO S, BEUSE T, KÜPERS V, et al. Quantification of aging mechanisms of carbon-coated and uncoated silicon thin film anodes in lithium metal and lithium ion cells[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est.2021.102812. |
18 | DUFFICY M K, CORDER R D, DENNIS K A, et al. Guar gel binders for silicon nanoparticle anodes: Relating binder rheology to electrode performance[J]. ACS Applied Materials & Interfaces, 2021, doi: 10.1021/acsami.1c10776. |
19 | EZZEDINE M, ZAMFIR M R, JARDALI F, et al. Insight into the formation and stability of solid electrolyte interphase for nanostructured silicon-based anode electrodes used in Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24734-24746. |
20 | FANG C, LIU J, ZHANG X, et al. In situ formed weave cage-like nanostructure wrapped mesoporous micron silicon anode for enhanced stable lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2021, 13(25): 29726-29736. |
21 | GAO X, LU W, XU J. Insights into the Li diffusion mechanism in Si/C composite anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21362-21370. |
22 | HU L, ZHANG X, ZHAO P, et al. Gradient H-bonding binder enables stable high-areal-capacity Si-based anodes in pouch cells[J]. Advanced Materials, 2021: doi: 10.1002/adma.202104416. |
23 | LIU Y Y, SUN M H, YUAN Y F, et al. Accommodation of silicon in an interconnected copper network for robust Li-ion storage[J]. Advanced Functional Materials, 2020, 30(14): doi: 10.1002/adfm.201910249. |
24 | RONNEBURG A, SILVI L, COOPER J, et al. Solid electrolyte interphase layer formation during lithiation of single-crystal silicon electrodes with a protective aluminum oxide coating[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21241-21249. |
25 | XIE Z H, RONG M Z, ZHANG M Q. Dynamically cross-linked polymeric binder-made durable silicon anode of a wide operating temperature Li-ion battery[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28737-28748. |
26 | ADAMS J N, NELSON G J. Cycling-induced microstructural changes in alloy anodes for lithium-ion batteries[J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(4): doi: 10.1115/1.4051550. |
27 | CHEN S R, TAO R M, TU J, et al. High performance flexible lithium-ion battery electrodes: Ion exchange assisted fabrication of carbon coated nickel oxide nanosheet arrays on carbon cloth[J]. Advanced Functional Materials, 2021, 31(24): doi: 10.1002/adfm. 202101199. |
28 | JIANG F, WANG Y, QIU T, et al. Superlithiation performance of covalent triazine frameworks as anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48818-48827. |
29 | XU N, LI L L, HE Y, et al. Understanding the molecular mechanism of lithium deposition for practical high-energy lithium-metal batteries[J]. Journal of Materials Chemistry A, 2020, 8(13): 6229-6237. |
30 | YANG T T, LI H, TANG Y F, et al. In situ observation of cracking and self-healing of solid electrolyte interphases during lithium deposition[J]. Science Bulletin, 2021, 66(17): 1754-1763. |
31 | GAO R M, YANG H, WANG C Y, et al. Fatigue-resistant interfacial layer for safe lithium metal batteries[J]. Angewandte Chemie, 2021, 60(48): 25508-25513. |
32 | LI X, CONG L, MA S, et al. Low resistance and high stable solid-liquid electrolyte interphases enable high-voltage solid-state lithium metal batteries[J]. Advanced Functional Materials, 2021, 31(20): doi: 10.1002/adfm.202010611. |
33 | LI L B, SHAN Y H, WANG F R, et al. Improving fast and safe transfer of lithium ions in solid-state lithium batteries by porosity and channel structure of polymer electrolyte[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48525-48535. |
34 | LIU X, GARCIA-MENDEZ R, LUPINI A R, et al. Local electronic structure variation resulting in Li 'filament' formation within solid electrolytes[J]. Nature Materials, 2021, 20(11): 1485-1490. |
35 | QIN Z W, MENG X C, XIE Y M, et al. Fast Li-ion transport pathways via 3D continuous networks in homogeneous garnet-type electrolyte for solid-state lithium batteries[J]. Energy Storage Materials, 2021, 43: 190-201. |
36 | SHI X, ZENG Z, SUN M, et al. Fast Li-ion conductor of Li3HoBr6 for stable all-solid-state lithium-sulfur battery[J]. Nano Letters, 2021, doi: 10.1021/acs.nanolett.1c03573. |
37 | SHIN D M, BACHMAN J E, TAYLOR M K, et al. A single-ion conducting borate network polymer as a viable quasi-solid electrolyte for lithium metal batteries[J]. Advanced Materials, 2020, 32(10): doi: 10.1002/adma.201905771. |
38 | LIN Y, WU M, SUN J, et al. A high-capacity, long-cycling all-solid-state lithium battery enabled by integrated cathode/ultrathin solid electrolyte[J]. Advanced Energy Materials, 2021, 11(35): doi: 10.1002/aenm.202101612. |
39 | LIU Y, PENG H, SU H, et al. Ultrafast synthesis of I-rich lithium argyrodite glass-ceramic electrolyte with high ionic conductivity[J]. Advanced Materials, 2021: doi: 10.1002/adma.202107346. |
40 | WANG B Y, WANG G X, HE P G, et al. Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries[J]. Journal of Membrane Science, 2022, 642: doi: 10.1016/j.memsci.2021.119952. |
41 | HUANG W L, BI Z J, ZHAO N, et al. Chemical interface engineering of solid garnet batteries for long-life and high-rate performance[J]. Chemical Engineering Journal, 2021, 424: doi: 10.1016/j.cej.2021.130423. |
42 | LEE C, HAN S Y, LEWIS J A, et al. Stack pressure measurements to probe the evolution of the lithium-solid-state electrolyte interface[J]. ACS Energy Letters, 2021, 6(9): 3261-3269. |
43 | JI X, LI S, CAO M, et al. Crosslinked polymer-brush electrolytes: An approach to safe all-solid-state lithium metal batteries at room temperature[J]. Batteries & Supercaps, 2021, doi: 10.1002/batt. 202100319. |
44 | DUAN J, HUANG L, WANG T, et al. Shaping the contact between Li metal anode and solid-state electrolytes[J]. Advanced Functional Materials, 2020, 30(15): doi: 10.1002/adfm.201908701. |
45 | YAO M, RUAN Q Q, YU T H, et al. Solid polymer electrolyte with in situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery[J]. Energy Storage Materials, 2022, 44: 93-103. |
46 | ZHOU C T, ZHENG L, HE T H, et al. Rational design of a carbonate-glyme hybrid electrolyte for practical anode-free lithium metal batteries[J]. Energy Storage Materials, 2021, 42: 295-306. |
47 | CHEN Y, ZHAO W M, ZHANG Q H, et al. Armoring LiNi1/3Co1/3Mn1/3O2 cathode with reliable fluorinated organic-inorganic hybrid interphase layer toward durable high rate battery[J]. Advanced Functional Materials, 2020, 30(19): doi: 10.1002/adfm.202000396. |
48 | AHN J, IM J, SEO H, et al. Enhancing the cycling stability of Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode at 4.5 V via 2, 4-difluorobiphenyl additive[J]. Journal of Power Sources, 2021, 512: doi: 10.1016/j.jpowsour.2021.230513. |
49 | HA Y, FINEGAN D P, COLCLASURE A M, et al. Evaluating temperature dependent degradation mechanisms of silicon-graphite electrodes and the effect of fluoroethylene carbonate electrolyte additive[J]. Electrochimica Acta, 2021, 394: doi: 10.1016/j.electacta. 2021.139097. |
50 | HUANG L B, LI G, LU Z Y, et al. Trans-difluoroethylene carbonate as an electrolyte additive for microsized SiOx@C anodes[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24916-24924. |
51 | JIAO T P, LIU G P, ZOU Y, et al. A novel trimethylsilyl 2-(fluorosulfonyl)difluoroacetate additive for stabilizing the Ni-rich LiNi0.9Co0.05Mn0.05O2/electrolyte interface[J]. Journal of Power Sources, 2021, 515: doi: 10.1016/j.jpowsour.2021.230618. |
52 | LIANG J Y, ZHANG X D, ZHANG Y, et al. Cooperative shielding of Bi-electrodes via in situ amorphous electrode-electrolyte interphases for practical high-energy lithium-metal batteries[J]. Journal of the American Chemical Society, 2021, 143(40): 16768-16776. |
53 | LIN S S, HUA H M, LAI P B, et al. A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range[J]. Advanced Energy Materials, 2021, 11(36): doi: 10.1002/aenm.202101775. |
54 | LIU G, JIAO T, CHENG Y, et al. Interfacial enhancement of silicon-based anode by a lactam-type electrolyte additive[J]. ACS Applied Energy Materials, 2021, 4(9): 10323-10332. |
55 | YANG M, MO Y. Interfacial defect of lithium metal in solid-state batteries[J]. Angewandte Chemie, 2021, 60(39): 21494-21501. |
56 | WAN H, ZHANG B, LIU S, et al. Understanding LiI-LiBr catalyst activity for solid state Li2S/S reactions in an all-solid-state lithium battery[J]. Nano letters, 2021, 21(19): 8488-8494. |
57 | ZAHIRI B, PATRA A, KIGGINS C, et al. Revealing the role of the cathode-electrolyte interface on solid-state batteries[J]. Nature Materials, 2021, 20(10): 1392-1400. |
58 | KARUPPIAH C, BESHAHWURED S L, WU Y S, et al. Patterning and a composite protective layer provide modified Li metal anodes for dendrite-free high-voltage solid-state lithium batteries[J]. ACS Applied Energy Materials, 2021, 4(10): 11248-11257. |
59 | YANG C, WU Q, XIE W, et al. Copper-coordinated cellulose ion conductors for solid-state batteries[J]. Nature, 2021, 598(7882): 590-596. |
60 | CHOI Y G, SHIN J C, PARK A, et al. Pyrrolidinium-PEG ionic copolyester: Li-ion accelerator in polymer network solid-state electrolytes[J]. Advanced Energy Materials, 2021, 11(44): doi: 10. 1002/aenm.202102660. |
61 | WANG Q, WAN J, CAO X, et al. Organophosphorus hybrid solid electrolyte interphase layer based on LixPO4 enables uniform lithium deposition for high-performance lithium metal batteries[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202107923. |
62 | JUNG Y, PARK S, KIM J K, et al. Toward achieving high kinetics in anodeless Li2S battery: Surface modification of Cu current collector[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202109759. |
63 | ZHANG J, WANG J, QIAN M, et al. Lithiothermic-synchronous construction of Mo-Li2S-graphene nanocomposites for high-energy Li2S//Si-C battery[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202108305. |
64 | BI C X, ZHAO M, HOU L P, et al. Anode material options toward 500 W·h/kg lithium-sulfur batteries[J]. Advanced Science, 2021, doi: 10.1002/advs.202103910. |
65 | SUN C Y, YANG Y H, BIAN X F, et al. Uniform deposition of Li-metal anodes guided by 3D current collectors with in situ modification of the lithiophilic matrix[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48691-48699. |
66 | HUANG Y, SHAIBANI M, GAMOT T D, et al. A saccharide-based binder for efficient polysulfide regulations in Li-S batteries[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-021-25612-5. |
67 | QI C Y, LI Z, WANG G, et al. Microregion welding strategy prevents the formation of inactive sulfur species for high-performance Li-S battery[J]. Advanced Energy Materials, 2021, 11(39): doi: 10. 1002/aenm.202102024. |
68 | SUN R, HU J, SHI X, et al. Water-soluble cross-linking functional binder for low-cost and high-performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2021, 31(42): doi: 10.1002/adfm. 202104858. |
69 | ZHANG T, HU F, SHAO W, et al. Sulfur-rich polymers based cathode with epoxy/ally dual-sulfur-fixing mechanism for high stability lithium-sulfur battery[J]. ACS Nano, 2021, 15(9): 15027-15038. |
70 | ZOU Y, GUO D, YANG B, et al. Toward high-performance lithium-sulfur batteries: Efficient anchoring and catalytic conversion of polysulfides using P-doped carbon foam[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50093-50100. |
71 | FAN Q, JIANG J, ZHANG S, et al. Accelerated polysulfide redox in binder-free Li2S cathodes promises high-energy-density lithium-sulfur batteries[J]. Advanced Energy Materials, 2021, 11(32): doi: 10.1002/aenm.202100957. |
72 | SACCONE M A, GREER J R. Understanding and mitigating mechanical degradation in lithium-sulfur batteries: Additive manufacturing of Li2S composites and nanomechanical particle compressions[J]. Journal of Materials Research, 2021, 36(18): 3656-3666. |
73 | SHEN Y F, SHEN X H, YANG M, et al. Achieving desirable initial coulombic efficiencies and full capacity utilization of Li-ion batteries by chemical prelithiation of graphite anode[J]. Advanced Functional Materials, 2021, 31(24): doi: 10.1002/adfm.202101181. |
74 | GENG F S, YANG Q, LI C, et al. Mapping the distribution and the microstructural dimensions of metallic lithium deposits in an anode-free battery by in situ EPR imaging[J]. Chemistry of Materials, 2021, 33(21): 8223-8234. |
75 | BRUGGE R H, PESCI F M, CAVALLARO A, et al. The origin of chemical inhomogeneity in garnet electrolytes and its impact on the electrochemical performance[J]. Journal of Materials Chemistry A, 2020, 8(28): 14265-14276. |
76 | HAMANN T, ZHANG L, GONG Y H, et al. The effects of constriction factor and geometric tortuosity on Li-ion transport in porous solid-state Li-ion electrolytes[J]. Advanced Functional Materials, 2020, 30(14): doi: 10.1002/afma.201910362. |
77 | VIDAL D, LEYS C, MATHIEU B, et al. Si-C/G based anode swelling and porosity evolution in 18650 casing and in pouch cell[J]. Journal of Power Sources, 2021, 514: doi: 10.1016/j.jpowsour. 2021.230552. |
78 | LI S P, XIONG R Y, HAN Z L, et al. Unveiling low-tortuous effect on electrochemical performance toward ultrathick LiFePO4 electrode with 100 mg/cm2 area loading[J]. Journal of Power Sources, 2021, 515: doi: 10.1016/j.jpowsour.2021.230588. |
79 | HUANG C J, THIRUMALRAJ B, TAO H C, et al. Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries[J]. Nature Communications, 2021, 12(1): doi: 10. 1038/s41467-021-21683-6. |
80 | DOSE W M, MORZY J K, MAHADEVEGOWDA A, et al. The influence of electrochemical cycling protocols on capacity loss in nickel-rich lithium-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(41): 23582-23596. |
81 | FANG C C, LU B Y, PAWAR G, et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries[J]. Nature Energy, 2021, 6(10): 987-994. |
82 | XIONG J H, LIANG Z, GUO Q K, et al. Three methods to reduce gas evolution from a lithium-rich manganese/graphite pouch cell[J]. Energy & Fuels, 2021, 35(18): 15143-15152. |
83 | GAO N, KIM S, CHINNAM P, et al. Methodologies for design, characterization and testing of electrolytes that enable extreme fast charging of lithium-ion cells[J]. Energy Storage Materials, 2022, 44: 296-312. |
84 | MELIN T, LUNDSTRÖM R, BERG E J. Revisiting the ethylene carbonate-propylene carbonate mystery with operando characterization[J]. Advanced Materials Interfaces, 2021: doi: 10.1002/admi.202101258. |
86 | MÜLLER S, SAUTER C, SHUNMUGASUNDARAM R, et al. Deep learning-based segmentation of lithium-ion battery microstructures enhanced by artificially generated electrodes[J]. Nature Communication, 2021, 12(1): doi: 10.1038/s41467-021-26480-9. |
87 | CHOUCHANE M, ARCELUS O, FRANCO A A. Heterogeneous solid-electrolyte interphase in graphite electrodes assessed by 4D-resolved computational simulations[J]. Batteries & Supercaps, 2021, 4(9): 1457-1463. |
88 | YUAN C H, LU W Q, XU J. Unlocking the electrochemical-mechanical coupling behaviors of dendrite growth and crack propagation in all-solid-state batteries[J]. Advanced Energy Materials, 2021, 11(36): doi: 10.1002/aenm.202101807. |
89 | HAN B, ZHANG Y, LIAO C, et al. Probing the reactivity of the active material of a Li-ion silicon anode with common battery solvents[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28017-28026. |
90 | LIU M, VATAMANU J, CHEN X, et al. Hydrolysis of LiPF6-containing electrolyte at high voltage[J]. ACS Energy Letters, 2021, 6(6): 2096-2102. |
91 | CHEN Y L, YU Z A, RUDNICKI P, et al. Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery[J]. Journal of the American Chemical Society, 2021, 143(44): 18703-18713. |
92 | WANG C H, AOYAGI K, MUELLER T. Computational design of double-layer cathode coatings in all-solid-state batteries[J]. Journal of Materials Chemistry A, 2021, 9(40): 23206-23213. |
93 | NOLAN A M, WICKRAMARATNE D, BERNSTEIN N, et al. Li+ diffusion in amorphous and crystalline Al2O3 for battery electrode coatings[J]. Chemistry of Materials, 2021, 33(19): 7795-7804. |
94 | GONZALEZ-AGUIRRE E, GASTELURRUTIA J, SURESH PATIL M, et al. Avoiding thermal issues during fast charging starting with proper cell selection criteria[J]. Journal of the Electrochemical Society, 2021, 168(11): doi: 10.1149/1945-7111/ac3348. |
95 | SHENG J, ZHANG Q, LIU M, et al. Stabilized solid electrolyte interphase induced by ultrathin boron nitride membranes for safe lithium metal batteries[J]. Nano Letters, 2021, 21(19): 8447-8454. |
96 | OBREZKOV F A, FEDINA E S, SOMOVA A I, et al. Facile method for cross-linking aromatic polyamines to engender beyond lithium ion cathodes for dual-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(10): 11827-11835. |
97 | LIU Y, YU P P, SUN Q T, et al. Predicted operando polymerization at lithium anode via boron insertion[J]. ACS Energy Letters, 2021, 6(6): 2320-2327. |
98 | TAKENO M, KATAKURA S, MIYAZAKI K, et al. Relation between mixing processes and properties of lithium-ion battery electrode-slurry[J]. Electrochemistry, 2021, 89(6): 585-589. |
99 | DENG D R, YUAN R M, YU P K, et al. An enhanced electrode via coupling with a conducting molecule to extend interfacial reactions[J]. Advanced Energy Materials, 2021, 11(33): doi: 10.1002/aenm. 202170129. |
100 | ZHEN E M, JIANG J M, LV C, et al. Effects of binder content on low-cost solvent-free electrodes made by dry-spraying manufacturing for lithium-ion batteries[J]. Journal of Power Sources, 2021, 515: doi: 10.1016/j.jpowsour.2021.230644. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[7] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[8] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[9] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[12] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[13] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[14] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[15] | Ying TAO, Lingfei ZHAO, Yunxiao WANG, Yuliang CAO, Shulei CHOU. Stabilization of sodium metal anodes by dual-salt high concentration electrolyte [J]. Energy Storage Science and Technology, 2022, 11(4): 1103-1109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||