Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (6): 1874-1882.doi: 10.19799/j.cnki.2095-4239.2022.0061
Previous Articles Next Articles
ZHANG Haoran1(), CHE Haiying2(), GUO Kaiqiang1, SHEN Zhan3, ZHANG Yunlong2, CHEN Hangda2, ZHOU Huang2, LIAO Jianping2, LIU Haimei1, MA Zifeng2,3
Received:
2022-02-08
Revised:
2022-02-27
Online:
2022-06-05
Published:
2022-06-13
Contact:
CHE Haiying
E-mail:500.haoran@163.com;chysyx@sjtu.edu.cn
CLC Number:
ZHANG Haoran, CHE Haiying, GUO Kaiqiang, SHEN Zhan, ZHANG Yunlong, CHEN Hangda, ZHOU Huang, LIAO Jianping, LIU Haimei, MA Zifeng. Preparation of Sn-doped NaNi1/3Fe1/3Mn1/3-x Sn x O2 cathode materials and their electrochemical performance[J]. Energy Storage Science and Technology, 2022, 11(6): 1874-1882.
1 | RAO F Y, WANG Z Q, XU B, et al. First-principles study of lithium and sodium atoms intercalation in fluorinated graphite[J]. Engineering, 2015, 1(2): 243-246. |
2 | HAN M J, YOON D K. Advances in soft materials for sustainable electronics[J]. Engineering, 2021, 7(5): 564-580. |
3 | 王凡凡, 刘晓斌, 陈龙, 等. 室温钠离子电池关键材料研究进展[J]. 电化学, 2019, 25(1): 55-76. |
WANG F F, LIU X B, CHEN L, et al. Recent progress in key materials for room-temperature sodium-ion batteries[J]. Journal of Electrochemistry, 2019, 25(1): 55-76. | |
4 | CHE H Y, YANG X R, WANG H, et al. Long cycle life of sodium-ion pouch cell achieved by using multiple electrolyte additives[J]. Journal of Power Sources, 2018, 407: 173-179. |
5 | CHE H Y, YANG X R, YU Y, et al. Engineering optimization approach of nonaqueous electrolyte for sodium ion battery with long cycle life and safety[J]. Green Energy & Environment, 2021, 6(2): 212-219. |
6 | ZHANG Q Q, ZHOU Q, LU Y X, et al. Modification of NASICON electrolyte and its application in real Na-ion cells[J]. Engineering, 2022, 8: 170-180. |
7 | KIM D, LEE E, SLATER M, et al. Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application[J]. Electrochemistry Communications, 2012, 18: 66-69. |
8 | WANG H, LIAO X Z, YANG Y, et al. Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(3): A565-A570. |
9 | 王红, 廖小珍, 颉莹莹, 等. 新型移动式钠离子电池储能系统设计与研究[J]. 储能科学与技术, 2016, 5(1): 65-68. |
WANG H, LIAO X Z, XIE Y Y, et al. Design and investigation on portable energy storage device based on sodium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(1): 65-68. | |
10 | SUN Y, WANG H, MENG D C, et al. Degradation mechanism of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials during ambient storage and their in situ regeneration[J]. ACS Applied Energy Materials, 2021, 4(3): 2061-2067. |
11 | 戚兴国, 王伟刚, 胡勇胜, 等. 钠离子电池层状氧化物正极材料的表面修饰研究[J]. 储能科学与技术, 2020, 9(5): 1396-1401. |
QI X G, WANG W G, HU Y S, et al. Surface modification research of layered oxide materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1396-1401. | |
12 | GUO S H, YU H J, LIU P, et al. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2[J]. Energy & Environmental Science, 2015, 8(4): 1237-1244. |
13 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
14 | YOU Y, MANTHIRAM A. Progress in high-voltage cathode materials for rechargeable sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(2): doi:10.1002/aenm.201701785. |
15 | SUN L Q, XIE Y Y, LIAO X Z, et al. Insight into Ca-substitution effects on O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries application[J]. Small, 2018, 14(21): doi:10.1002/smll.201704523. |
16 | YU T Y, HWANG J Y, BAE I T, et al. High-performance Ti-doped O3-type Na[Tix(Ni0.6Co0.2Mn0.2)1- x]O2 cathodes for practical sodium-ion batteries[J]. Journal of Power Sources, 2019, 422: 1-8. |
17 | MAO Q J, ZHANG C, YANG W Y, et al. Mitigating the voltage fading and lattice cell variations of O3-NaNi0.2Fe0.35Mn0.45O2 for high performance Na-ion battery cathode by Zn doping[J]. Journal of Alloys and Compounds, 2019, 794: 509-517. |
18 | ZHANG C, GAO R, ZHENG L R, et al. New insights into the roles of Mg in improving the rate capability and cycling stability of O3-NaMn0.48Ni0.2Fe0.3Mg0.02O2 for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 10819-10827. |
19 | WANG P F, YAO H R, LIU X Y, et al. Ti-substituted NaNi0.5 Mn0.5- x tix O2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries[J]. Advanced Materials, 2017, 29(19): doi:10.1002/adma.201700210. |
20 | DELMAS C, BORTHOMIEU Y, FAURE C, et al. Nickel hydroxide and derived phases obtained by chimie douce from NaNiO2[J]. Solid State Ionics, 1989, 32/33: 104-111. |
21 | 颉莹莹. 基于同步辐射X射线技术原位研究NaNi1/3Fe1/3Mn1/3O2正极材料合成过程、结构与热稳定性[D]. 上海: 上海交通大学, 2019. |
XIE Y Y. Research of synthesis process, structure and thermal stability for NaNi1/3Fe1/3Mn1/3O2 cathode material based on in situ synchrotron X-ray techniques[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
22 | SUN H L, WANG J, LIU Q, et al. Ag-Sn dual-modified LiNi0.8Co0.1Mn0.1O2 as cathode for lithium storage[J]. Journal of Alloys and Compounds, 2021, 850: doi: 10.1016/j.jallcom.2020.156763. |
23 | YANG X H, WANG Y Z, WANG J L, et al. Superior cyclability of Ce-doped P2-Na0.67Co0.20Mn0.80O2 cathode for sodium storage[J]. Journal of Physics and Chemistry of Solids, 2021, 148: doi: 10.1016/j.jpcs.2020.109750. |
24 | KONG W J, GAO R, LI Q Y, et al. Simultaneously tuning cationic and anionic redox in a P2-Na0.67Mn0.75Ni0.25O2 cathode material through synergic Cu/Mg co-doping[J]. Journal of Materials Chemistry A, 2019, 7(15): 9099-9109. |
25 | DANG R B, LI Q, CHEN M M, et al. CuO-coated and Cu2+-doped Co-modified P2-type Na2/3[Ni1/3 Mn2/3]O2 for sodium-ion batteries[J]. Physical Chemistry Chemical Physics: PCCP, 2018, 21(1): 314-321. |
26 | JEONG M, LEE H, YOON J, et al. O3-type NaNi1/3Fe1/3Mn1/3O2 layered cathode for Na-ion batteries: Structural evolution and redox mechanism upon Na (de) intercalation[J]. Journal of Power Sources, 2019, 439: doi:10.1016/j.jpowsour.2019.227064. |
27 | WU F, LI Q, CHEN L, et al. Use of Ce to reinforce the interface of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries under high operating voltage[J]. ChemSusChem, 2019, 12(4): 935-943. |
28 | XIE Y, GAO H, Harder R, et al. Revealing the structural evolution and phase transformation of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material on sintering and cycling processes[J]. ACS Applied Energy Materials, 2020, 3(7): 6107-6114. |
29 | CAI Y, CHU G W, LUO Y, et al. An evaluation of metronidazole degradation in a plasma-assisted rotating disk reactor coupled with TiO2 in aqueous solution[J]. Engineering, 2021, 7(11): 1603-1610. |
30 | WANG L, ZHAO J S, HE X M, et al. Electrochemical impedance spectroscopy (EIS) study of LiNi1/3Co1/3Mn1/3O2 for Li-ion batteries[J]. International Journal of Electrochemical Science, 2012, 7(1): 345-353. |
31 | MA X L, WANG C W, CHENG J G, et al. Effects of Sn doping on the structural and electrochemical properties of LiNi0.8Co0.2O2 cathode materials[J]. Solid State Ionics, 2007, 178(1/2): 125-129. |
[1] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
[2] | Xianghua ZHANG, Wei LUO, Xianhong RUI, Yan YU. Preparation and electrochemical performance of VOPO4·2H2O nanosheet cathode for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1410-1415. |
[3] | Shu GAO, Min ZHOU, Jing HAN, Cong GUO, Yuan TAN, Kai JIANG, Kangli WANG. Progress on polymer electrolyte in sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1300-1308. |
[4] | Wei ZHENG, Qiong LIU, Zhouguang LU. Modulating anionic redox reaction in layered transition metal oxides for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1416-1427. |
[5] | Huanqing LIU, Xu GAO, Jun CHEN, Shouyi YIN, Kangyu ZOU, Laiqiang XU, Guoqiang ZOU, Hongshuai HOU, Xiaobo JI. Layered oxide cathode for sodium ion batteries: Interlayer glide, phase transition and performance [J]. Energy Storage Science and Technology, 2020, 9(5): 1327-1339. |
[6] | Xiaohui ZHU, Yuhang ZHUANG, Yang ZHAO, Mingzhu NI, Jing XU, Hui XIA. Development of layered cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1340-1349. |
[7] | CAO Yuliang. The opportunities and challenges of sodium ion battery [J]. Energy Storage Science and Technology, 2020, 9(3): 757-761. |
[8] | LONG Xuanyou, WANG Jie, ZHAO Lina, ZHAO Hailei, WANG Kangkang, GAO Fei. Effect of chelating agent on crystal structure and sodium storage performance of Fe-based Prussian blue [J]. Energy Storage Science and Technology, 2020, 9(1): 57-64. |
[9] | QIU Shen, WU Xianyong, LU Haiyan, AI Xinping, YANG Hanxi, CAO Yuliang . Sodium storage performance of hard carbons prepared by pyrolyzing precursors with different molecular weight [J]. Energy Storage Science and Technology, 2016, 5(3): 335-340. |
[10] | NI Qiao, WU Chuan, BAI Ying, LIU Yuanchang, CHEN Guanghai, WU Feng . Na3V2(PO4)3/C cathode materials with preferred(113)orientation for sodium ion batteries [J]. Energy Storage Science and Technology, 2016, 5(3): 341-348. |
[11] | CAO Yi1, WANG Yonggang2, WANG Qing1, ZHANG Zhaoyong1, CHE Yong1, XIA Yongyao2, DAI Xiang1. Development of aqueous sodium ion battery [J]. Energy Storage Science and Technology, 2016, 5(3): 317-324. |
[12] | WANG Hong, LIAO Xiaozhen, XIE Yingying, WANG Mengxue, ZHOU Guanggai, YANG Ke, KANG Shuwen, ZHAO Zhengwei, MA Zifeng. Design and investigation on portable energy storage device based on sodium-ion batteries [J]. Energy Storage Science and Technology, 2016, 5(1): 65-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||