Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (9): 2781-2797.doi: 10.19799/j.cnki.2095-4239.2022.0326
• Special Issue for the 10th Anniversary • Previous Articles Next Articles
Xin SHEN1(), Rui ZHANG2, Chenzi ZHAO1, Peng WU3, Yutong ZHANG2, Jundong ZHANG1, Lizhen FAN4, Quanbing LIU5, Aibing CHEN6, Qiang ZHANG1()
Received:
2022-06-15
Revised:
2022-06-22
Online:
2022-09-05
Published:
2022-08-30
Contact:
Qiang ZHANG
E-mail:shenx17@mails.tsinghua.edu.cn;zhang-qiang@mails.tsinghua.edu.cn
CLC Number:
Xin SHEN, Rui ZHANG, Chenzi ZHAO, Peng WU, Yutong ZHANG, Jundong ZHANG, Lizhen FAN, Quanbing LIU, Aibing CHEN, Qiang ZHANG. Recent advances in mechano-electrochemistry in lithium metal batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2781-2797.
Table 1
Mechanical properties of lithium at room temperature"
微观结构 | 杨氏模量/GPa | 屈服强度/MPa | 测试条件 | 参考文献 |
---|---|---|---|---|
单晶体相锂<111> | 21.2① | — | 声学法 | [ |
单晶体相锂<100> | 3.0① | — | 声学法 | [ |
单晶体相锂 | — | ~0.2* | 拉伸 | [ |
单晶锂棒(直径1.0 cm) | — | ~0.3* | 拉伸 | [ |
多晶锂棒(直径1.27 cm) | 7.82 | 0.73~0.81 | 声学法/拉伸 | [ |
多晶锂棒(直径>1.0 cm) | 1.9 | 0.56 | 压缩 | [ |
多晶锂柱(直径0.06~0.10 cm) | 8.0 | — | 声学法 | [ |
多晶体相锂 | 7.8 | 0.76 | 拉伸 | [ |
锂箔(750 μm厚) | 7.82 | — | 纳米压印 | [ |
锂箔(750 μm厚,晶粒约110 μm) | 9.43 | 0.57~1.26 | 纳米压印/拉伸 | [ |
锂箔(18 μm厚) | 8.2 | — | 纳米压印,31 ℃ | [ |
锂箔(5 μm厚) | 9.8 | 2.5~30* | 纳米压印,31 ℃ | [ |
锂柱(直径0.98~9.45 μm) | — | 15~105 | 压缩 | [ |
苔藓状锂枝晶 | 1.6~2.6 | — | 纳米压印 | [ |
晶须状锂枝晶(76~608 nm) | — | 12~244 | 压缩 | [ |
锂枝晶(360~759 nm) | 6.76±2.88 | 16±6.82 | 纳米压缩 | [ |
1 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
2 | SHEN X, LIU H, CHENG X B, et al. Beyond lithium ion sbatteries: Higher energy density battery systems based on lithium metal anodes[J]. Energy Storage Materials, 2018, 12: 161-175. |
3 | GAO M, Li H, XU L, et al.Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges[J]. Journal of Energy Chemistry, 2021, 59: 666-687. |
4 | SHEN X, ZHANG X Q, DING F, et al. Advanced electrode materials in lithium batteries: Retrospect and prospect[J]. Energy Material Advances, 2021: 1-15. |
5 | BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S Batteries with High Energy Storage[J]. Nature Materials, 2012, 11(1): 19-29. |
6 | WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614. |
7 | WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456. |
8 | WHITTINGHAM M S. Electrical energy storage and intercalation chemistry[J]. Science, 1976, 192(4244): 1126-1127. |
9 | FOUCHARD D, TAYLOR J B. The molicel® rechargeable lithium system: Multicell aspects[J]. Journal of Power Sources, 1987, 21(3/4): 195-205. |
10 | BRANDT K, LAMAN F C. Reproducibility and reliability of rechargeable lithium/molybdenum disulfide batteries[J]. Journal of Power Sources, 1989, 25(4): 265-276. |
11 | YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte Chemie International Edition, 2012, 51(24): 5798-5800. |
12 | CHENG X B, LIU H, YUAN H, et al. A perspective on sustainable energy materials for lithium batteries[J]. SusMat, 2021, 1(1): 38-50.. |
13 | LIU J, YUAN H, TAO X Y, et al. Recent progress on biomass-derived ecomaterials toward advanced rechargeable lithium batteries[J]. EcoMat, 2020, 2(1): doi: 10.1002/eom2.12019. |
14 | YUAN S Y, KONG T Y, ZHANG Y Y, et al. Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions[J]. Angewandte Chemie International Edition, 2021, 60(49): 25624-25638. |
15 | KONG L, TANG C, PENG H J, et al. Advanced energy materials for flexible batteries in energy storage: A Review[J]. SmartMat, 2020, 1(1): doi: 10.1002/smm2.1007. |
16 | 丰闪闪, 刘晓斌, 郭石麟, 等. 锂枝晶的成核、生长与抑制[J]. 化工学报, 2022, 73(1): 97-109. |
FENG Shanshan, LIU Xiaobin, GUO Shilin, et al. Nucleation, growth and inhibition of lithium dendrites[J]. CIESC Journal, 2022, 73(1): 97-109. | |
17 | CHEN X R, ZHAO B C, YAN C, et al. Review on Li deposition in working batteries: From Nucleation to Early Growth[J]. Advanced Materials, 2021: doi: 10.1002/adma.202004128. |
18 | FLANDROIS S, SIMON B. Carbon materials for lithium-ion rechargeable batteries[J]. Carbon, 1999, 37: 165-180. |
19 | LIU H, Li T, XU X, et al. Stable Interfaces constructed by concentrated ether electrolytes to render robust lithium metal batteries[J]. Chinese Journal of Chemical Engineering, 2021, 37: 152-158. |
20 | XU R, CHENG X B, YAN C, et al. Artificial interphases for highly stable lithium metal anode[J]. Matter, 2019, 1(2): 317-344. |
21 | WANG Z X, SUN Z H, LI J, et al. Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes[J]. Chemical Society Reviews, 2021, 50(5): 3178-3210. |
22 | 沈馨, 张睿, 程新兵, 等. 锂枝晶的原位观测及生长机制研究进展[J]. 储能科学与技术, 2017, 6(3): 418-432. |
SHEN X, ZHANG R, CHENG X B, et al. Recent progress on in situ observation and growth mechanism of lithium metal dendrites[J]. Energy Storage Science and Technology, 2017, 6(3): 418-432. | |
23 | 张睿, 沈馨, 袁洪, 等. 二次电池中金属锂负极沉脱机理研究进展[J]. 化工学报, 2021, 72(12): 6144-6160. |
ZHANG R, SHEN X, YUAN H, et al. Recent progress on lithium plating/stripping mechanisms in lithium metal batteries[J]. CIESC Journal, 2021, 72(12): 6144-6160. | |
24 | XU R, YAN C, HUANG J Q. Competitive solid-electrolyte interphase formation on working lithium anodes[J]. Trends in Chemistry, 2021, 3(1): 5-14. |
25 | ZHAO Q, STALIN S, ARCHER L A. Stabilizing metal battery anodes through the design of solid electrolyte interphases[J]. Joule, 2021, 5(5): 1119-1142. |
26 | UM J H, YU S H. Unraveling the mechanisms of lithium metal plating/stripping via in situ/operando analytical techniques[J]. Advanced Energy Materials, 2021, 11(27): doi: 10.1002/aenm.202003004. |
27 | ZHANG R, SHEN X, ZHANG Y T, et al. Dead lithium formation in lithium metal batteries: A phase field model[J]. Journal of Energy Chemistry, 2022, 71: 29-35. |
28 | CHEN X R, YAN C, DING J F, et al. New insights into "dead lithium" during stripping in lithium metal batteries[J]. Journal of Energy Chemistry, 2021, 62: 289-294. |
29 | DIXIT M B, SINGH N, HORWATH J P, et al. In situ investigation of chemomechanical effects in thiophosphate solid electrolytes[J]. Matter, 2020, 3(6): 2138-2159. |
30 | ZHOU Y. External pressure: An overlooked metric in evaluating next-generation battery performance[J]. Current Opinion in Electrochemistry, 2022, 31: 100916. |
31 | TANG Y F, ZHANG L Q, CHEN J Z, et al. Electro-chemo-mechanics of lithium in solid state lithium metal batteries[J]. Energy & Environmental Science, 2021, 14(2): 602-642. |
32 | 崔锦, 石川, 赵金保. 机械压力对锂电池性能影响的研究进展[J]. 化工学报, 2021, 72(7): 3511-3523. |
CUI J, SHI C, ZHAO J B. Research progress on the effect of mechanical pressure on the performance of lithium batteries[J]. CIESC Journal, 2021, 72(7): 3511-3523. | |
33 | SUN Z T, BO S H. Understanding electro-mechanical-thermal coupling in solid-state lithium metal batteries via phase-field modeling[J]. Journal of Materials Research, 2022: doi: 10.1557/s43578-022-00558-6. |
34 | 沈馨. 金属锂负极中的力-电化学耦合行为研究[D]. 北京: 清华大学, 2022. |
SHEN X. The mechano-electrochemical mechanism in lithium metal anodes[D]. Beijing: Tsinghua University, 2022. | |
35 | SLOTWINSKI T, TRIVISONNO J. Temperature dependence of the elastic constants of single crystal lithium[J]. Journal of Physics and Chemistry of Solids, 1969, 30(5): 1276-1278. |
36 | PICHL W, KRYSTIAN M. The flow stress of high purity alkali metals[J]. Physica Status Solidi (A), 1997, 160(2): 373-383. |
37 | GORGAS I, HERKE P, SCHOECK G. The plastic behaviour of lithium single crystals[J]. Physica Status Solidi (A), 1981, 67(2): 617-623. |
38 | MASIAS A, FELTEN N, GARCIA-MENDEZ R, et al. Elastic, plastic, and creep mechanical properties of lithium metal[J]. Journal of Materials Science, 2019, 54(3): 2585-2600. |
39 | SCHULTZ R P. Lithium: Measurement of Young's modulus and yield strength[R]. Office of Scientific and Technical Information (OSTI), 2002. |
40 | ROBERTSON W M, MONTGOMERY D J. Elastic modulus of isotopically-concentrated lithium[J]. Physical Review, 1960, 117(2): 440-442. |
41 | TARIQ S, AMMIGAN K, HURH P, et al. Li material testing-Fermilab antiproton source lithium collection lens[C]//Proceedings of the 2003 Particle Accelerator Conference. May 12-16, 2003, Portland, OR, USA. IEEE, 2003: 1452-1454. |
42 | WANG Y K, DANG D Y, WANG M, et al. Mechanical behavior of electroplated mossy lithium at room temperature studied by flat punch indentation[J]. Applied Physics Letters, 2019, 115(4): 043903. |
43 | FINCHER C D, OJEDA D, ZHANG Y W, et al. Mechanical properties of metallic lithium: From nano to bulk scales[J]. Acta Materialia, 2020, 186: 215-222. |
44 | HERBERT E G, HACKNEY S A, DUDNEY N J, et al. Nanoindentation of high-purity vapor deposited lithium films: The elastic modulus[J]. Journal of Materials Research, 2018, 33(10): 1335-1346. |
45 | HERBERT E G, HACKNEY S A, THOLE V, et al. Nanoindentation of high-purity vapor deposited lithium films: A mechanistic rationalization of the transition from diffusion to dislocation-mediated flow[J]. Journal of Materials Research, 2018, 33(10): 1361-1368. |
46 | XU C, AHMAD Z, ARYANFAR A, et al. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(1): 57-61. |
47 | ZHANG L Q, YANG T T, DU C C, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up[J]. Nature Nanotechnology, 2020, 15(2): 94-98. |
48 | CITRIN M A, YANG H, NIEH S K, et al. From ion to atom to dendrite: Formation and nanomechanical behavior of electrodeposited lithium[J]. MRS Bulletin, 2020, 45(11): 891-904. |
49 | C NASH H, SMITH C S. Single-crystal elastic constants of lithium[J]. Journal of Physics and Chemistry of Solids, 1959, 9(2): 113-118. |
50 | LEPAGE W S, CHEN Y X, KAZYAK E, et al. Lithium mechanics: Roles of strain rate and temperature and implications for lithium metal batteries[J]. Journal of the Electrochemical Society, 2019, 166(2): A89-A97. |
51 | MESSER R, NOACK F. Nuclear magnetic relaxation by self-diffusion in solid lithium: T1-frequency dependence[J]. Applied Physics, 1975, 6(1): 79-88. |
52 | WANG Z Q, LI X Y, CHEN Y M, et al. Creep-enabled 3D solid-state lithium-metal battery[J]. Chem, 2020, 6(11): 2878-2892. |
53 | DING S C, FAIRGRIEVE-PARK L, SENDETSKYI O, et al. Compressive creep deformation of lithium foil at varied cell conditions[J]. Journal of Power Sources, 2021, 488: 229404. |
54 | SARGENT P M, ASHBY M F. Deformation mechanism maps for alkali metals[J]. Scripta Metallurgica, 1984, 18(2): 145-150. |
55 | MCDOWELL M T. Nanomechanical measurements shed light on solid-state battery degradation[J]. MRS Bulletin, 2020, 45(11): 889-890. |
56 | HE Y, REN X D, XU Y B, et al. Origin of lithium whisker formation and growth under stress[J]. Nature Nanotechnology, 2019, 14(11): 1042-1047. |
57 | KRENN C R, ROUNDY D, MORRIS J W Jr, et al. Ideal strengths of bcc metals[J]. Materials Science and Engineering: A, 2001, 319/320/321: 111-114. |
58 | HAN Y Y, LIU B, XIAO Z, et al. Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives[J]. InfoMat, 2021, 3(2): 155-174. |
59 | YANG F Q. Modeling analysis for the growth of a Li sphere and Li whisker in a solid-state lithium metal battery[J]. Physical Chemistry Chemical Physics: PCCP, 2020, 22(24): 13737-13745. |
60 | GANSER M, HILDEBRAND F E, KLINSMANN M, et al. An extended formulation of butler-Volmer electrochemical reaction kinetics including the influence of mechanics[J]. Journal of the Electrochemical Society, 2019, 166(4): H167-H176. |
61 | MONROE C, NEWMAN J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of the Electrochemical Society, 2005, 152(2): A396. |
62 | CARMONA E A, WANG M J, SONG Y M, et al. The effect of mechanical state on the equilibrium potential of alkali metal/ceramic single-ion conductor systems[J]. Advanced Energy Materials, 2021, 11(29): doi: 10.1002/aenm.202101355. |
63 | XU G, HAO F, HONG J W, et al. Atomic-scale simulations for lithium dendrite growth driven by strain gradient[J]. Applied Mathematics and Mechanics, 2020, 41(4): 533-542. |
64 | BECHERER J, KRAMER D, MÖNIG R. The growth mechanism of lithium dendrites and its coupling to mechanical stress[J]. Journal of Materials Chemistry A, 2022, 10(10): 5530-5539. |
65 | JANA A, WOO S I, VIKRANT K S N, et al. Electrochemomechanics of lithium dendrite growth[J]. Energy & Environmental Science, 2019, 12(12): 3595-3607. |
66 | JANA A, GARCÍA R E. Lithium dendrite growth mechanisms in liquid electrolytes[J]. Nano Energy, 2017, 41: 552-565. |
67 | ZHANG J W, LIU Y P, WANG C G, et al. An electrochemical-mechanical phase field model for lithium dendrite[J]. Journal of the Electrochemical Society, 2021, 168(9): 090522. |
68 | YURKIV V, FOROOZAN T, RAMASUBRAMANIAN A, et al. The influence of stress field on Li electrodeposition in Li-metal battery[J]. MRS Communications, 2018, 8(3): 1285-1291. |
69 | YURKIV V, FOROOZAN T, RAMASUBRAMANIAN A, et al. Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior[J]. Electrochimica Acta, 2018, 265: 609-619. |
70 | FANG C C, LU B Y, PAWAR G, et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries[J]. Nature Energy, 2021, 6(10): 987-994. |
71 | HAO F, VERMA A, MUKHERJEE P P. Mechanistic insight into dendrite-SEI interactions for lithium metal electrodes[J]. Journal of Materials Chemistry A, 2018, 6(40): 19664-19671. |
72 | LIN L D, WANG J X, LI R, et al. Synergistic effect of interface layer and mechanical pressure for advanced Li metal anodes[J]. Energy Storage Materials, 2020, 26: 112-118. |
73 | CHO J H, XIAO X C, GUO K, et al. Stress evolution in lithium metal electrodes[J]. Energy Storage Materials, 2020, 24: 281-290. |
74 | SHEN X, ZHANG R, CHEN X, et al. The failure of solid electrolyte interphase on Li metal anode: Structural uniformity or mechanical strength? [J]. Advanced Energy Materials, 2020, 10(10): doi: 10.1002/aenm.201903645. |
75 | LIU Y Y, XU X Y, KAPITANOVA O O, et al. Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes[J]. Advanced Energy Materials, 2022, 12(9): doi: 10.1002/aenm.202103589. |
76 | LIU Y Y, XU X Y, SADD M, et al. Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal[J]. Advanced Science, 2021, 8(5): doi: 10.1002/advs.202003301. |
77 | LIANG J, CHEN Q Y, LIAO X B, et al. A nano-shield design for separators to resist dendrite formation in lithium-metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(16): 6561-6566. |
78 | JANA A, ELY D R, GARCÍA R E. Dendrite-separator interactions in lithium-based batteries[J]. Journal of Power Sources, 2015, 275: 912-921. |
79 | FERRESE A, NEWMAN J. Mechanical deformation of a lithium-metal anode due to a very stiff separator[J]. Journal of the Electrochemical Society, 2014, 161(9): A1350-A1359. |
80 | YAN S T, DENG J, BAE C, et al. In-plane orthotropic property characterization of a polymeric battery separator[J]. Polymer Testing, 2018, 72: 46-54. |
81 | WU W, XIAO X R, HUANG X S, et al. A multiphysics model for the in situ stress analysis of the separator in a lithium-ion battery cell[J]. Computational Materials Science, 2014, 83: 127-136. |
82 | GOR G Y, CANNARELLA J, PRÉVOST J H, et al. A model for the behavior of battery separators in compression at different strain/charge rates[J]. Journal of the Electrochemical Society, 2014, 161(11): F3065-F3071. |
83 | WANG X, ZENG W, HONG L, et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates[J]. Nature Energy, 2018, 3(3): 227-235. |
84 | ZHANG C F, LIU Y Y, JIAO X X, et al. In situ volume change studies of lithium metal electrode under different pressure[J]. Journal of The Electrochemical Society, 2019, 166(15): A3675-A3678. |
85 | SHENG S E, SHENG L, WANG L, et al. Thickness variation of lithium metal anode with cycling[J]. Journal of Power Sources, 2020, 476: 228749. |
86 | WILKINSON D P, WAINWRIGHT D. In-situ study of electrode stack growth in rechargeable cells at constant pressure[J]. Journal of Electroanalytical Chemistry, 1993, 355(1/2): 193-203. |
87 | LOULI A J, GENOVESE M, WEBER R, et al. Exploring the Impact of mechanical pressure on the performance of anode-free lithium metal cells[J]. Journal of The Electrochemical Society, 2019, 166(8): A1291-A1299. |
88 | SHEN X, ZHANG R, SHI P, et al. How does external pressure shape Li dendrites in Li metal batteries? [J]. Advanced Energy Materials, 2021, 11(10): doi: 10.1002/aenm.202003416. |
89 | 南皓雄, 赵辰孜, 袁洪, 等. 固态金属锂电池研究进展:外部压力和内部应力的影响[J]. 化工学报, 2021, 72(1): 61-70. |
NAN H X, ZHAO C Z, YUAN H, et al. Recent advances in solid-state lithium metal batteries: The role of external pressure and internal stress[J]. CIESC Journal, 2021, 72(1): 61-70. | |
90 | 赵辰孜, 袁洪, 卢洋, 等. 固态金属锂负极界面研究进展[J]. 化工进展, 2021, 40(9): 4986-4997. |
ZHAO C Z, YUAN H, LU Y, et al. Review on interfaces in solid-state lithium metal anodes[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4986-4997. | |
91 | WANG M J, KAZYAK E, DASGUPTA N P, et al. Transitioning solid-state batteries from lab to market: Linking electro-chemo-mechanics with practical considerations[J]. Joule, 2021, 5(6): 1371-1390. |
92 | GUPTA A, KAZYAK E, CRAIG N, et al. Evaluating the effects of temperature and pressure on Li/PEO-LiTFSI interfacial stability and kinetics[J]. Journal of the Electrochemical Society, 2018, 165(11): A2801-A2806. |
93 | CHAKRABORTY S, SETHI G K, FRENCK L, et al. Effect of yield stress on stability of block copolymer electrolytes against lithium metal electrodes[J]. ACS Applied Energy Materials, 2022, 5(1): 852-861. |
94 | ZHANG H, CHEN Y H, LI C M, et al. Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: A perspective[J]. SusMat, 2021, 1(1): 24-37. |
95 | MONROE C, NEWMAN J. The effect of interfacial deformation of electrodeposition kinetics[J]. Journal of The Electrochemical Society, 2004, 151(6): A880-A886. |
96 | BARAI P, HIGA K, SRINIVASAN V. Effect of initial state of lithium on the propensity for dendrite formation: A theoretical study[J]. Journal of the Electrochemical Society, 2016, 164(2): A180-A189. |
97 | BARAI P, HIGA K, SRINIVASAN V. Impact of external pressure and electrolyte transport properties on lithium dendrite growth[J]. Journal of the Electrochemical Society, 2018, 165(11): A2654-A2666. |
98 | BARAI P, HIGA K, SRINIVASAN V. Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies[J]. Physical Chemistry Chemical Physics: PCCP, 2017, 19(31): 20493-20505. |
99 | GANSER M, HILDEBRAND F, MCMEEKING R, et al. Stiffer is not necessarily better: Requirements analysis for binary solid polymer electrolytes that ensure stable lithium metal electrodes[J]. Journal of the Electrochemical Society, 2020, 167: 130525. |
100 | REN Y, ZHOU Y, CAO Y. Inhibit of lithium dendrite growth in solid composite electrolyte by phase-field modeling[J]. The Journal of Physical Chemistry C, 2020, 124(23): 12195-12204. |
101 | SHARON D, BENNINGTON P, PATEL S N, et al. Stabilizing dendritic electrodeposition by limiting spatial dimensions in nanostructured electrolytes[J]. ACS Energy Letters, 2020, 5(9): 2889-2896. |
102 | WOLFENSTINE J, ALLEN J L, SAKAMOTO J, et al. Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: A brief review[J]. Ionics, 2018, 24(5): 1271-1276. |
103 | NI J E, CASE E D, SAKAMOTO J S, et al. Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet[J]. Journal of Materials Science, 2012, 47(23): 7978-7985. |
104 | KAZYAK E, GARCIA-MENDEZ R, LEPAGE W S, et al. Li penetration in ceramic solid electrolytes: Operando microscopy analysis of morphology, propagation, and reversibility[J]. Matter, 2020, 2(4): 1025-1048. |
105 | LV Q, JIANG Y P, WANG B, et al. Suppressing lithium dendrites within inorganic solid-state electrolytes[J]. Cell Reports Physical Science, 2022, 3(1): 100706. |
106 | TIAN H K, LIU Z, JI Y Z, et al. Interfacial electronic properties dictate Li dendrite growth in solid electrolytes[J]. Chemistry of Materials, 2019, 31(18): 7351-7359. |
107 | AGUESSE F, MANALASTAS W, BUANNIC L, et al. Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3808-3816. |
108 | DOUX J M, YANG Y, TAN D H S, et al. Pressure effects on sulfide electrolytes for all solid-state batteries[J]. Journal of Materials Chemistry A, 2020, 8(10): 5049-5055. |
109 | BARAI P, HIGA K, NGO A T, et al. Mechanical stress induced current focusing and fracture in grain boundaries[J]. Journal of the Electrochemical Society, 2019, 166(10): A1752-A1762. |
110 | TANTRATIAN K, YAN H H, ELLWOOD K, et al. Unraveling the Li penetration mechanism in polycrystalline solid electrolytes[J]. Advanced Energy Materials, 2021, 11(13): doi: 10.1002/aenm.202003417. |
111 | KLINSMANN M, HILDEBRAND F E, GANSER M, et al. Dendritic cracking in solid electrolytes driven by lithium insertion[J]. Journal of Power Sources, 2019, 442: 227226. |
112 | NING Z Y, JOLLY D S, LI G C, et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells[J]. Nature Materials, 2021, 20(8): 1121-1129. |
113 | YUAN C H, GAO X, JIA Y K, et al. Coupled crack propagation and dendrite growth in solid electrolyte of all-solid-state battery[J]. Nano Energy, 2021, 86: 106057. |
114 | YUAN C H, LU W Q, XU J. Unlocking the electrochemical-mechanical coupling behaviors of dendrite growth and crack propagation in all-solid-state batteries[J]. Advanced Energy Materials, 2021, 11(36): doi: 10.1002/aenm.202101817. |
115 | QI Y, BAN C M, HARRIS S J. A new general paradigm for understanding and preventing Li metal penetration through solid electrolytes[J]. Joule, 2020, 4(12): 2599-2608. |
116 | KRAUSKOPF T, HARTMANN H, ZEIER W G, et al. Toward a fundamental understanding of the lithium metal anode in solid-state batteries-an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14463-14477. |
117 | HÄNSEL C, KUNDU D P. The stack pressure dilemma in sulfide electrolyte based Li metal solid-state batteries: A case study with Li6PS5Cl solid electrolyte[J]. Advanced Materials Interfaces, 2021, 8(10): doi: 10.1002/admi.202100206. |
118 | QIN L G, WANG K H, XU H, et al. The role of mechanical pressure on dendritic surface toward stable lithium metal anode[J]. Nano Energy, 2020, 77: 105098. |
119 | NARAYAN S, ANAND L. A large deformation elastic-viscoplastic model for lithium[J]. Extreme Mechanics Letters, 2018, 24: 21-29. |
120 | ZHANG X, WANG Q J, HARRISON K L, et al. Pressure-driven interface evolution in solid-state lithium metal batteries[J]. Cell Reports Physical Science, 2020, 1(2): 100012. |
121 | HAO S, BAILEY J J, IACOVIELLO F, et al. 3D imaging of lithium protrusions in solid-state lithium batteries using X-ray computed tomography[J]. Advanced Functional Materials, 2021, 31(10): doi: 10.1002/adfm.202007564. |
122 | NARAYAN S, ANAND L. On modeling the detrimental effects of inhomogeneous plating-and-stripping at a lithium-metal/solid-electrolyte interface in a solid-state-battery[J]. Journal of the Electrochemical Society, 2020, 167(4): 040525. |
123 | YAN H H, TANTRATIAN K, ELLWOOD K, et al. How does the creep stress regulate void formation at the lithium-solid electrolyte interface during stripping? [J]. Advanced Energy Materials, 2022, 12(2): doi: 10.1002/aenm.202102283. |
124 | JIANG F N, YANG S J, LIU H, et al. Mechanism understanding for stripping electrochemistry of Li metal anode[J]. SusMat, 2021, 1(4): 506-536. |
125 | KASEMCHAINAN J, ZEKOLL S, SPENCER JOLLY D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells[J]. Nature Materials, 2019, 18(10): 1105-1111. |
126 | SHISHVAN S S, FLECK N A, DESHPANDE V S. The initiation of void growth during stripping of Li electrodes in solid electrolyte cells[J]. Journal of Power Sources, 2021, 488: 229437. |
127 | TIAN H K, QI Y. Simulation of the effect of contact area loss in all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(11): E3512-E3521. |
128 | FUCHS T, HASLAM C G, MOY A C, et al. Increasing the pressure-free stripping capacity of the lithium metal anode in solid-state-batteries by carbon nanotubes[J]. Advanced Energy Materials, 2022: doi: 10.1002/aenm.202201125. |
129 | MIAO Z Y, LI Y P, XIAO X P, et al. Direct optical fiber monitor on stress evolution of the sulfur-based cathodes for lithium-sulfur batteries[J]. Energy & Environmental Science, 2022, 15(5): 2029-2038. |
130 | SUN F, WANG C, OSENBERG M, et al. Clarifying the electro-chemo-mechanical coupling in Li10SnP2S12 based all-solid-state batteries[J]. Advanced Energy Materials, 2022, 12(13): doi: 10.1002/aenm.202103714. |
131 | SHI P, ZHANG X Q, SHEN X, et al. A review of composite lithium metal anode for practical applications[J]. Advanced Materials Technologies, 2020, 5(1): doi: 10.1002/admt.201900806. |
132 | LIU H, CHENG X B, ZHANG R, et al. Mesoporous graphene hosts for dendrite-free lithium metal anode in working rechargeable batteries[J]. Transactions of Tianjin University, 2020, 26(2): 127-134. |
133 | 詹迎新, 石鹏, 张学强, 等. 锂金属负极亲锂骨架的研究进展[J]. 高等学校化学学报, 2021, 42(5): 1569-1580. |
ZHAN Y X, SHI P, ZHANG X Q, et al. Recent progress of lithiophilic host for lithium metal anode[J]. Chemical Journal of Chinese Universities, 2021, 42(5): 1569-1580. | |
134 | SHI Y Z, LI B, ZHANG Y Z, et al. Tortuosity modulation toward high-energy and high-power lithium metal batteries[J]. Advanced Energy Materials, 2021, 11(12): doi: 10.1002/aenm.202003663. |
135 | SHI P, ZHANG X Q, SHEN X, et al. A pressure self-adaptable route for uniform lithium plating and stripping in composite anode[J]. Advanced Functional Materials, 2021, 31(5): doi: 10.1002/adfm.202004189. |
136 | ZHANG R, SHEN X, JU H T, et al. Driving lithium to deposit inside structured lithium metal anodes: A phase field model[J]. Journal of Energy Chemistry, 2022, 73: 285-291. |
137 | ENG A Y S, SONI C B, LUM Y, et al. Theory-guided experimental design in battery materials research[J]. Science Advances, 2022, 8(19): doi: 10.1126/sciadv.abm.2422. |
[1] | XIE Chenglu, HUANG Xiankun, KANG Lixia, LIU Yongzhong. Electrocatalytic performances of Ru nanoparticles supported on carbon nanotubes by colloidal solution for synthetic ammonia [J]. Energy Storage Science and Technology, 2022, 11(6): 1947-1956. |
[2] | Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes [J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235. |
[3] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[4] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
[5] | Shiying ZHAN, Dongxu YU, Nan CHEN, Fei DU. Advances of aqueous batteries with non-metallic cation charge carriers [J]. Energy Storage Science and Technology, 2021, 10(6): 2144-2155. |
[6] | Yangyang LIU, Xuyang WANG, Xieyu XU, Yongjing WANG, Shizhao XIONG, Zhongxiao SONG. Research progresses on modified current collector for lithium metal anode [J]. Energy Storage Science and Technology, 2021, 10(4): 1261-1272. |
[7] | Yue MU, Yun DU, Hai MING, Songtong ZHANG, Jingyi QIU. Methods of investigating structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 7-26. |
[8] | FENG Xiaolong, YANG Le, ZHANG Mingliang, TAO Ran, HAN Yu, WEN Jiawei, WANG Panding, SONG Weili, AI Shigang, CHEN Haosen, FANG Daining. Failure mechanics inner lithium ion batteries: In-situ multi-field experimental methods [J]. Energy Storage Science and Technology, 2019, 8(6): 1062-1075. |
[9] | FAN Yaping, YAN Liqin, JIAN Dechao, LYU Taolin, YU Meng, WANG Zhenyu, ZHANG Quansheng, XIE Jingying. In situ detection of lithium dendrite in the failure of lithium-ion batteries [J]. Energy Storage Science and Technology, 2019, 8(6): 1040-1049. |
[10] | NIE Kaihui, GENG Zhen, WANG Qiyu, YUE Jinming, YU Xiqian, LI Hong. Experimental measurement and analysis methods of cyclic voltammetry for lithium batteries [J]. Energy Storage Science and Technology, 2018, 7(3): 539-553. |
[11] | WANG Chao1, DAI Xingjian2, WANG Yong2, LI Xi1, ZHONG Guobin1. Research progress of energy storage composite flywheel [J]. Energy Storage Science and Technology, 2017, 6(5): 1076-1083. |
[12] | SHEN Xin, ZHANG Rui, CHENG Xinbing, GUAN Chao, HUANG Jiaqi, ZHANG Qiang. Recent progress on in-situ observation and growth mechanism of lithium metal dendrites [J]. Energy Storage Science and Technology, 2017, 6(3): 418-432. |
[13] | LU Xiaochuan, LI Guosheng, MEINHARDT Kerry D, SPRENKLE Vincent L. Development of Na-beta alumina batteries at Pacific Northwest National Laboratory:From tubular to planar [J]. Energy Storage Science and Technology, 2016, 5(3): 309-316. |
[14] | LING Shigang, WU Jiaoyang, ZHANG Shu, GAO Jian, WANG Shaofei, LI Hong. Fundamental scientific aspects of lithium ion batteries(ⅫⅠ) —Electrochemical measurement [J]. Energy Storage Science and Technology, 2015, 4(1): 83-103. |
[15] | PENG Jiayue, LIU Yali, HUANG Jie, LI Hong. Fundamental scientific aspects of lithium ion batteries(Ⅺ)--Lithium air and lithium sulfur batteries [J]. Energy Storage Science and Technology, 2014, 3(5): 526-543. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||