Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (9): 2980-2988.doi: 10.19799/j.cnki.2095-4239.2022.0213
• Special Issue for the 10th Anniversary • Previous Articles Next Articles
Kaiqiang GUO1(), Haiying CHE2(), Haoran ZHANG1, Jianping LIAO2, Huang ZHOU2, Yunlong ZHANG2, Hangda CHEN2, Zhan SHEN3, Haimei LIU1, Zifeng MA2,3
Received:
2022-04-20
Revised:
2022-05-08
Online:
2022-09-05
Published:
2022-08-30
Contact:
Haiying CHE
E-mail:gkq0412@163.com;chysyx@sjtu.edu.cn
CLC Number:
Kaiqiang GUO, Haiying CHE, Haoran ZHANG, Jianping LIAO, Huang ZHOU, Yunlong ZHANG, Hangda CHEN, Zhan SHEN, Haimei LIU, Zifeng MA. Preparation and characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2980-2988.
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
2 | WHITTINGHAM M S. Ultimate limits to intercalation reactions for lithium batteries[J]. Chemical Reviews, 2014, 114(23): 11414-11443. |
3 | TRAN Q N, KIM I T, HUR J, et al. Composite of nanocrystalline cellulose with tin dioxide as lightweight substrates for high-performance lithium-ion battery[J]. Korean Journal of Chemical Engineering, 2020, 37(5): 898-904. |
4 | 曹勇, 严长青, 王义飞, 等. 高安全高比能量动力锂离子电池系统路线探索[J]. 储能科学与技术, 2018, 7(3): 384-393. |
CAO Y, YAN C Q, WANG Y F, et al. The technical route exploration of lithium ion battery with high safety and high energy density[J]. Energy Storage Science and Technology, 2018, 7(3): 384-393. | |
5 | SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430. |
6 | 方铮, 曹余良, 胡勇胜, 等. 室温钠离子电池技术经济性分析[J]. 储能科学与技术, 2016, 5(2): 149-158. |
FANG Z, CAO Y L, HU Y S, et al. Economic analysis for room-temperature sodium-ion battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 149-158. | |
7 | 王红, 廖小珍, 颉莹莹, 等. 新型移动式钠离子电池储能系统设计与研究[J]. 储能科学与技术, 2016, 5(1): 65-68. |
WANG H, LIAO X Z, XIE Y Y, et al. Design and investigation on portable energy storage device based on sodium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(1): 65-68. | |
8 | WANG H, LIAO X Z, YANG Y, et al. Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(3): A565-A570. |
9 | 刘欢庆, 高旭, 陈军, 等. 钠离子电池层状氧化物正极:层间滑移,相变与性能[J]. 储能科学与技术, 2020, 9(5): 1327-1339. |
LIU H Q, GAO X, CHEN J, et al. Layered oxide cathode for sodium ion batteries: Interlayer glide, phase transition and performance[J]. Energy Storage Science and Technology, 2020, 9(5): 1327-1339. | |
10 | XIE Y Y, WANG H, XU G L, et al. In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation[J]. Advanced Energy Materials, 2016, 6(24): doi: 10.1002/aenm.201601306. |
11 | WANG P F, YOU Y, YIN Y X, et al. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance[J]. Advanced Energy Materials, 2018, 8(8): doi: 10.1002/aenm.201701912. |
12 | 戚兴国, 王伟刚, 胡勇胜, 等. 钠离子电池层状氧化物正极材料的表面修饰研究[J]. 储能科学与技术, 2020, 9(5): 1396-1401. |
QI X G, WANG W G, HU Y S, et al. Surface modification research of layered oxide materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1396-1401. | |
13 | SUN L Q, XIE Y Y, LIAO X Z, et al. Insight into Ca-substitution effects on O3 -Type NaNi1/3 Fe1/3 Mn1/3 O2 cathode materials for sodium-ion batteries application[J]. Small, 2018, 14(21): doi: 10.1002/smll.201704523. |
14 | LI L, WANG H B, HAN W Z, et al. Understanding oxygen redox in Cu-doped P2-Na0.67Mn0.8Fe0.1Co0.1O2 cathode materials for Na-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(16): A3854-A3861. |
15 | YU T Y, HWANG J Y, BAE I T, et al. High-performance Ti-doped O3 -type Na[Tix(Ni0.6Co0.2Mn0.2)1- x]O2 cathodes for practical sodium-ion batteries[J]. Journal of Power Sources, 2019, 422: 1-8. |
16 | 孙阳, 王红, 车海英, 等. ZrO2包覆对层状氧化物正极材料储钠性能的改善[J]. 过程工程学报, 2022, 22(1): 72-78. |
SUN Y, WANG H, CHE H Y, et al. Improved sodium storage performance of layered oxide cathode materials via ZrO2 coating[J]. The Chinese Journal of Process Engineering, 2022, 22(1): 72-78. | |
17 | SUN H H, HWANG J Y, YOON C S, et al. Capacity degradation mechanism and cycling stability enhancement of AlF3-coated nanorod gradient Na[Ni0.65 Co0.08 Mn0.27]O2 cathode for sodium-ion batteries[J]. ACS Nano, 2018, 12(12): 12912-12922. |
18 | JO J H, CHOI J U, KONAROV A, et al. Sodium-ion batteries: Building effective layered cathode materials with long-term cycling by modifying the surface via sodium phosphate[J]. Advanced Functional Materials, 2018, 28(14): doi:10.1002/adfm.201705968. |
19 | ZHOU A J, WANG W H, LIU Q, et al. Stable, fast and high-energy-density LiCoO2 cathode at high operation voltage enabled by glassy B2O3 modification[J]. Journal of Power Sources, 2017, 362: 131-139. |
20 | LI J H, LIU Z Q, WANG Y F, et al. Investigation of facial B2O3 surface modification effect on the cycling stability and high-rate capacity of LiNi1/3Co1/3Mn1/3O2 cathode[J]. Journal of Alloys and Compounds, 2020, 834: doi: 10.1016/j.jallcom.2020.155150. |
21 | PAN L C, XIA Y G, QIU B, et al. Structure and electrochemistry of B doped Li(Li0.2Ni0.13Co0.13Mn0.54)1- xBxO2 as cathode materials for lithium-ion batteries[J]. Journal of Power Sources, 2016, 327: 273-280. |
22 | CHEN T, LI X, WANG H, et al. The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material[J]. Journal of Power Sources, 2018, 374: 1-11. |
23 | CHEN J S, WANG X L, JIN E M, et al. Optimization of B2O3 coating process for NCA cathodes to achieve long-term stability for application in lithium ion batteries[J]. Energy, 2021, 222: 119913. |
24 | WANG W Z, WU L Y, LI Z W, et al. Stabilization of a 4.7 V high-voltage nickel-rich layered oxide cathode for lithium-ion batteries through boron-based surface residual lithium-tuned interface modification engineering[J]. ChemElectroChem, 2021, 8(11): 2014-2021. |
25 | SUN Y, WANG H, MENG D, et al. Degradation mechanism of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials during ambient storage and their in situ regeneration[J]. ACS Applied Energy Materials, 2021, 4(3): 2061-2067. |
26 | 颉莹莹. 基于同步辐射X射线技术原位研究NaNi1/3Fe1/3Mn1/3O2正极材料合成过程、结构与热稳定性[D]. 上海: 上海交通大学, 2019. |
XIE Y Y. Research of synthesis process, structure and thermal stability for NaNi1/3Fe1/3Mn1/3O2 cathode material based on in situ synchrotron X-ray techniques[D]. Shanghai: Shanghai Jiao Tong University, 2019. |
[1] | Jun ZHANG, Qi LI, Ying TAO, Quanhong YANG. Sieving carbons for sodium-ion batteries: Origin and progress [J]. Energy Storage Science and Technology, 2022, 11(9): 2825-2833. |
[2] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[3] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[4] | Zuhao ZHANG, Xiaokai DING, Dong LUO, Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials [J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. |
[5] | Hongming YI, Zhiqiang LYU, Huamin ZHANG, Mingming SONG, Qiong ZHENG, Xianfeng LI. Recent progress and application challenges in V-based polyanionic compounds for cathodes of sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1350-1369. |
[6] | Wei ZHENG, Qiong LIU, Zhouguang LU. Modulating anionic redox reaction in layered transition metal oxides for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1416-1427. |
[7] | Huanqing LIU, Xu GAO, Jun CHEN, Shouyi YIN, Kangyu ZOU, Laiqiang XU, Guoqiang ZOU, Hongshuai HOU, Xiaobo JI. Layered oxide cathode for sodium ion batteries: Interlayer glide, phase transition and performance [J]. Energy Storage Science and Technology, 2020, 9(5): 1327-1339. |
[8] | Yongsheng GAO, Guanghai CHEN, Xinran WANG, Ying BAI, Chuan WU. Safety of electrolytes for sodium-ion batteries: Strategies and progress [J]. Energy Storage Science and Technology, 2020, 9(5): 1309-1317. |
[9] | Xingguo QI, Weigang WANG, Yongsheng HU, Qiang ZHANG. Surface modification research of layered oxide materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1396-1401. |
[10] | Xiaohui ZHU, Yuhang ZHUANG, Yang ZHAO, Mingzhu NI, Jing XU, Hui XIA. Development of layered cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1340-1349. |
[11] | BIAN Jingjing, CHU Shiyong, XI Kaiying, GUO Shaohua, ZHOU Haoshen. Role of Sn doping in layered chromium-based cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 385-391. |
[12] | LIANG Jumei, GUO Yumeng, WANG Mingxuan, XILI Dege, ZHANG Lijuan. Recent research progress of tin oxide as anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2019, 8(5): 813-820. |
[13] | LIU Mengyun, GU Tiantian, ZHOU Min, WANG Kangli, CHENG Shijie, JIANG Kai. Conjugated carbonyl compounds as electrode materials for sodium-ion/potassium-ion batteries [J]. Energy Storage Science and Technology, 2018, 7(6): 1171-1181. |
[14] | JIANG Kezhu, GUO Shaohua, ZHANG Xueping, ZHANG Xiaoyu, HE Ping, ZHOU Haoshen. Titanium-based layered materials for sodium ion batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 952-960. |
[15] | WANG Yuesheng, RONG Xiaohui, XU Shuyin, HU Yongsheng, LI Hong, CHEN Liquan. Recent progress of electrode materials for room-temperature sodium-ion stationary batteries [J]. Energy Storage Science and Technology, 2016, 5(3): 268-284. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||