Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (10): 3056-3063.doi: 10.19799/j.cnki.2095-4239.2023.0391
• Energy Storage Materials and Devices • Previous Articles Next Articles
Received:
2023-06-06
Revised:
2023-06-25
Online:
2023-10-05
Published:
2023-10-09
Contact:
Kejun CHEN
E-mail:chenkejunckj@126.com
CLC Number:
Kejun CHEN, Lijun FAN. Controllable synthesis of Co2+-doped FeS2 and their sodium storage performances[J]. Energy Storage Science and Technology, 2023, 12(10): 3056-3063.
1 | VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3: 18013. |
2 | WANG Y F, LIU Y, LI Q M, et al. New dual-anions FeS0.5Se0.5@NC porous nanorods as advanced electrode materials for wide-temperature sodium-ion half/full batteries[J]. Applied Surface Science, 2023, 620: 156836. |
3 | QI S H, XU B L, TIONG V T, et al. Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries[J]. Chemical Engineering Journal, 2020, 379: 122261. |
4 | NAYAK P K, YANG L T, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie (International Ed in English), 2018, 57(1): 102-120. |
5 | DELMAS C. Sodium and sodium-ion batteries: 50 years of research[J]. Advanced Energy Materials, 2018, 8(17): 1703137. |
6 | LI Y, LAI X Q, QU J P, et al. Research progress in regulation strategies of high-performance antimony-based anode materials for sodium ion batteries[J]. Acta Physico Chimica Sinica, 2022: 2204049. |
7 | ZHAO L N, QU Z H. Advanced flexible electrode materials and structural designs for sodium ion batteries[J]. Journal of Energy Chemistry, 2022, 71: 108-128. |
8 | LI X, QI S H, ZHANG W C, et al. Recent progress on FeS2 as anodes for metal-ion batteries[J]. Rare Metals, 2020, 39(11): 1239-1255. |
9 | YAN D, XIAO S H, LI X Y, et al. NiS2/FeS heterostructured nanoflowers for high-performance sodium storage[J]. Energy Material Advances, 2023, 4: 0012. |
10 | ZHU X X, WANG P, DING Y H, et al. Polycrystalline Fe- and Sn-based sulfides for high-capacity sodium-ion battery anodes[J]. Chemical Communications, 2023, 59(40): 6036-6039. |
11 | MA L L, HOU B X, ZHANG H, et al. Regulation of MIL-88B(Fe) to design FeS2 core-shelled hollow sphere as high-rate anode for a full sodium-ion battery[J]. Chemical Engineering Journal, 2023, 453: 139735. |
12 | LIM H, KIM S, KIM J H, et al. Carbon shell-coated mackinawite FeS platelets as anode materials for high-performance sodium-ion batteries[J]. Chemical Engineering Journal, 2023, 458: 141354. |
13 | CHEN K Y, LI G J, WANG Y J, et al. High loading FeS2 nanoparticles anchored on biomass-derived carbon tube as low cost and long cycle anode for sodium-ion batteries[J]. Green Energy & Environment, 2020, 5(1): 50-58. |
14 | FANG L B, BAHLAWANE N, SUN W P, et al. Conversion-alloying anode materials for sodium ion batteries[J]. Small, 2021, 17(37): 2101137. |
15 | CAO L A, GAO X W, ZHANG B, et al. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries[J]. ACS Nano, 2020, 14(3): 3610-3620. |
16 | ZHANG K, PARK M, ZHOU L M, et al. Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries[J]. Angewandte Chemie International Edition, 2016, 55(41): 12822-12826. |
17 | LU Z X, ZHAI Y J, WANG N N, et al. FeS2 nanoparticles embedded in N/S co-doped porous carbon fibers as anode for sodium-ion batteries[J]. Chemical Engineering Journal, 2020, 380: 122455. |
18 | CHEN D M, WU Y C, HUANG Z Q, et al. Phase transformation controlled Co1- xS-CoS2 heterostructures embedded in S-doped carbon nanofibers for superior Sodium-Ion storage[J]. Chemical Engineering Journal, 2023, 457: 141181. |
19 | ZHANG S G, ZHAO H P, MA W Y, et al. Insight to Se-doping effects on Fe7S8/carbon nanotubes composite as anode for sodium-ion batteries[J]. Journal of Power Sources, 2022, 536: 231458. |
20 | LU S, JIANG J, YANG H, et al. Phase engineering of iron-cobalt sulfides for Zn-air and Na-ion batteries[J]. ACS Nano, 2020, 14(8): 10438-10451. |
21 | LONG Y Q, YANG J, GAO X, et al. Solid-solution anion-enhanced electrochemical performances of metal sulfides/selenides for sodium-ion capacitors: The case of FeS2- xSex[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 10945-10954. |
22 | LU X Y, SHI Y S, TANG D M, et al. Accelerated ionic and charge transfer through atomic interfacial electric fields for superior sodium storage[J]. ACS Nano, 2022, 16(3): 4775-4785. |
23 | LIN Q, ZHANG S C, YU L J, et al. Recycle waste washcloth to design Fe3O4/FeS2/C heterojunction membrane as high-area capacity freestanding anode for sodium-ion batteries[J]. Chemical Engineering Journal, 2023, 455: 140945. |
24 | WU H, YUAN R L, LI M J, et al. Co0.85Se-Fe7Se8 nanocuboids embedded in reduced graphene oxides as cycle-stable anodes for sodium-ion batteries[J]. Carbon, 2022, 198: 171-178. |
25 | 马存双, 万延华, 许永开, 等. 超薄氮硫掺杂碳包覆二硫化铁的制备及储钠性能[J]. 无机盐工业, 2022, 54(6): 55-60. |
MA C S, WAN Y H, XU Y K, et al. Preparation and sodium storage properties of ultra-thin N and S doped carbon coated FeS2[J]. Inorganic Chemicals Industry, 2022, 54(6): 55-60. | |
26 | LU Z X, ZHAO Z X, LIU G Y, et al. Bimetallic sulfide FeS2@SnS2 as high-performance anodes for sodium-ion batteries[J]. Frontiers of Materials Science, 2022, 16(1): 220593. |
27 | SADAQAT A, ALI G, UL HASAN M, et al. Laminar-protuberant like p-FeS2 rooted in mesoporous carbon sheets as high capacity anode for Na-ion batteries[J]. Electrochimica Acta, 2023, 439: 141650. |
28 | ZHANG Z W, ZHONG X B, ZHANG Y H, et al. Scalable synthesis of mesoporous FeS2 nanorods as high-performance anode materials for sodium-ion batteries[J]. Rare Metals, 2022, 41(1): 21-28. |
29 | WANG S G, CUI T T, SHAO L Y, et al. In-situ fabrication of active interfaces towards FeSe as advanced performance anode for sodium-ion batteries[J]. Journal of Colloid and Interface Science, 2022, 627: 922-930. |
30 | 张德柳, 张言, 王海, 等. 镁掺杂协同氧化铝包覆优化锂离子电池高镍正极材料[J]. 储能科学与技术, 2023, 12(2): 339-348. |
ZHANG D L, ZHANG Y, WANG H, et al. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating[J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. | |
31 | YUE L C, SONG W, WU Z G, et al. Constructing FeS2/TiO2 p-n heterostructure encapsulated in one-dimensional carbon nanofibers for achieving highly stable sodium-ion battery[J]. Chemical Engineering Journal, 2023, 455: 140824. |
32 | ZHANG D M, JIA J H, YANG C C, et al. Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries[J]. Energy Storage Materials, 2020, 24: 439-449. |
33 | DONG C F, GUO L J, LI H B, et al. Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries[J]. Energy Storage Materials, 2020, 25: 679-686. |
34 | WANG J, XU S D, LU Z H, et al. Hollow-structured CoSe2/C anode materials: Preparation and sodium storage properties for sodium-ion batteries[J]. Journal of Inorganic Materials, 2022, 37(12): 1344. |
35 | GAO L L, WANG J, WANG W L, et al. NiSe2/CoSe2 nanoparticles anchored on nitrogen-doped carbon nanosheets: Toward high performance anode for Na-ion battery[J]. Journal of Electroanalytical Chemistry, 2023, 928: 117013. |
[1] | Haoran CAI, Lijue YAN, Xu YANG, Huilin PAN. Structural evolution and sodium-storage performance of O3/P2-Na x Ni1/3Co1/3Mn1/3O2 multiphasic cathode materials [J]. Energy Storage Science and Technology, 2023, 12(9): 2707-2714. |
[2] | Yuwen ZHAO, Huan YANG, Junpeng GUO, Yi ZHANG, Qi SUN, Zhijia ZHANG. Application of magnetic metal elements in sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1332-1347. |
[3] | Cai TANG, Jiangmin JIANG, Xinfeng WANG, Guangfa LIU, Yanhua CUI, Quanchao ZHUANG. Research progress of Li/CF x primary batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1093-1109. |
[4] | Shugang LIU, Bo MENG, Zhenglong LI, Yaxiong YANG, Jian CHEN. Electrochemical performance of chemical prelithiated Li x (Mg, Ni, Zn, Cu, Co) 1-x O high-entropy oxide as anode material for lithium ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 743-753. |
[5] | Wenshu ZHANG, Fangyuan HU, Hao HUANG, Xudong WANG, Man YAO. Sodium storage anode based on titanium-based MXene and its performance regulation mechanism [J]. Energy Storage Science and Technology, 2023, 12(1): 35-41. |
[6] | Jun ZHANG, Qi LI, Ying TAO, Quanhong YANG. Sieving carbons for sodium-ion batteries: Origin and progress [J]. Energy Storage Science and Technology, 2022, 11(9): 2825-2833. |
[7] | Kaiqiang GUO, Haiying CHE, Haoran ZHANG, Jianping LIAO, Huang ZHOU, Yunlong ZHANG, Hangda CHEN, Zhan SHEN, Haimei LIU, Zifeng MA. Preparation and characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2980-2988. |
[8] | Shuya GONG, Yue WANG, Meng LI, Jingyi QIU, Hong WANG, Yuehua WEN, Bin XU. Research progress on TiNb2O7 anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2921-2932. |
[9] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[10] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[11] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[12] | Jie CHEN, Weilun CHEN, Xu ZHANG, Yanwei ZHOU, Wuxing ZHANG. Research progress of pre-sodiation technologies in sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(11): 3487-3496. |
[13] | Weixiang CHENG, Xingwen HUANG, Yuezhu LI, Junqi HU, Songyi LIAO, Yonggang MIN. Advances in layered metal disulfide as anode material for Na-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(10): 3062-3075. |
[14] | Dewang SUN, Bizhi JIANG, Tao YUAN, Shiyou ZHENG. Research progress of titanium niobium oxide used as anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2127-2143. |
[15] | Yuexia LI, Quanbing LIU. Application of MXene-based nanomaterials in electrocatalysis for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1918-1930. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||