Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (11): 3508-3518.doi: 10.19799/j.cnki.2095-4239.2023.0458
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Received:
2023-07-03
Revised:
2023-08-13
Online:
2023-11-05
Published:
2023-11-16
Contact:
Yongjun MIN
E-mail:wangchen12090598@126.com;yjmin@njfu.edu.cn
CLC Number:
Chen WANG, Yongjun MIN. SOH estimation of lithium-ion batteries based on capacity increment curve and GWO-GPR[J]. Energy Storage Science and Technology, 2023, 12(11): 3508-3518.
Table 3
Evaluation of SOH estimation results by different methods"
电池 型号 | GWO-GPR | SVR | ELM | GPR | 文献[ | ||||
---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | |
B0005 | 0.0067 | 0.0038 | 0.0127 | 0.0099 | 0.0190 | 0.0167 | 0.0156 | 0.0128 | 0.0072 |
B0006 | 0.0103 | 0.0050 | 0.0282 | 0.0214 | 0.0141 | 0.0092 | 0.0244 | 0.0180 | 0.0196 |
B0007 | 0.0073 | 0.0035 | 0.0099 | 0.0074 | 0.0162 | 0.0138 | 0.0232 | 0.0171 | 0.0210 |
1 | LI L, YOU S X, YANG C, et al. Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses[J]. Applied Energy, 2016, 162: 868-879. |
2 | ADAIKKAPPAN M, SATHIYAMOORTHY N. Modeling, state of charge estimation, and charging of lithium-ion battery in electric vehicle: A review[J]. International Journal of Energy Research, 2022, 46(3): 2141-2165. |
3 | RUAN H K, WEI Z B, SHANG W T, et al. Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging[J]. Applied Energy, 2023, 336: 120751. |
4 | 肖浩逸, 何晓霞, 梁佳佳, 等. 一种基于模态分解和机器学习的锂电池寿命预测方法[J]. 储能科学与技术, 2022, 11(12): 3999-4009. |
XIAO H Y, HE X X, LIANG J J, et al. A lithium battery life-prediction method based on mode decomposition and machine learning[J]. Energy Storage Science and Technology, 2022, 11(12): 3999-4009. | |
5 | LI J F, WANG D F, DENG L, et al. Aging modes analysis and physical parameter identification based on a simplified electrochemical model for lithium-ion batteries[J]. Journal of Energy Storage, 2020, 31: 101538. |
6 | 戴彦文, 于艾清. 基于健康特征参数的CNN-LSTM&GRU组合锂电池SOH估计[J]. 储能科学与技术, 2022, 11(5): 1641-1649. |
DAI Y W, YU A Q. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation[J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. | |
7 | BIAN X L, WEI Z B, LI W H, et al. State-of-health estimation of lithium-ion batteries by fusing an open circuit voltage model and incremental capacity analysis[J]. IEEE Transactions on Power Electronics, 2022, 37(2): 2226-2236. |
8 | GUHA A, PATRA A. State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models[J]. IEEE Transactions on Transportation Electrification, 2018, 4(1): 135-146. |
9 | LING L Y, WEI Y. State-of-charge and state-of-health estimation for lithium-ion batteries based on dual fractional-order extended Kalman filter and online parameter identification[J]. IEEE Access, 2021, 9: 47588-47602. |
10 | CHU A, ALLAM A, CORDOBA ARENAS A, et al. Stochastic capacity loss and remaining useful life models for lithium-ion batteries in plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2020, 478: 228991. |
11 | 周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(1): 105-111, 325. |
ZHOU D, SONG X H, LU W B, et al. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39(1): 105-111, 325. | |
12 | ZHENG Y J, OUYANG M G, LU L G, et al. Understanding aging mechanisms in lithium-ion battery packs: From cell capacity loss to pack capacity evolution[J]. Journal of Power Sources, 2015, 278: 287-295. |
13 | WU J, ZHANG C B, CHEN Z H. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks[J]. Applied Energy, 2016, 173: 134-140. |
14 | YAYAN U, ARSLAN A T, YUCEL H. A novel method for SoH prediction of batteries based on stacked LSTM with quick charge data[J]. Applied Artificial Intelligence, 2021, 35(6): 421-439. |
15 | WANG Z P, YUAN C G, LI X Y. Lithium battery state-of-health estimation via differential thermal voltammetry with Gaussian process regression[J]. IEEE Transactions on Transportation Electrification, 2021, 7(1): 16-25. |
16 | NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239: 680-688. |
17 | 陈琳, 王惠民, 李熠婧, 等. 用新陈代谢极限学习机实现电池健康状态估算[J]. 汽车工程, 2021, 43(1): 10-18. |
CHEN L, WANG H M, LI Y J, et al. Battery state-of-health estimation by using metabolic extreme learning machine[J]. Automotive Engineering, 2021, 43(1): 10-18. | |
18 | YANG N K, SONG Z Y, HOFMANN H, et al. Robust state of health estimation of lithium-ion batteries using convolutional neural network and random forest[J]. Journal of Energy Storage, 2022, 48: 103857. |
19 | SHENG H M, LIU X, BAI L B, et al. Small sample state of health estimation based on weighted Gaussian process regression[J]. Journal of Energy Storage, 2021, 41: 102816. |
20 | RICHARDSON R R, OSBORNE M A, HOWEY D A. Gaussian process regression for forecasting battery state of health[J]. Journal of Power Sources, 2017, 357: 209-219. |
21 | 申江卫, 马文赛, 肖仁鑫, 等. 基于优化高斯过程回归算法的锂离子电池可用容量估算[J]. 中国公路学报, 2022, 35(8): 31-43. |
SHEN J W, MA W S, XIAO R X, et al. Available capacity estimation of lithium-ion batteries based on optimized Gaussian process regression[J]. China Journal of Highway and Transport, 2022, 35(8): 31-43. | |
22 | 王萍, 彭香园, 程泽. 基于DTV-IGPR模型的锂离子电池SOH估计方法[J]. 汽车工程, 2021, 43(11): 1710-1719. |
WANG P, PENG X Y, CHENG Z. SOH estimation method for lithium-ion batteries based on DTV-IGPR model[J]. Automotive Engineering, 2021, 43(11): 1710-1719. | |
23 | HUANG H, HU S Y, SUN Y. A discrete curvature estimation based low-distortion adaptive savitzky-golay filter for ECG denoising[J]. Sensors, 2019, 19(7): 1617. |
24 | 陈峥, 李磊磊, 舒星, 等. 基于改进容量增量分析法的锂电池可用容量估计[J]. 中国公路学报, 2022, 35(8): 20-30. |
CHEN Z, LI L L, SHU X, et al. Estimation of available capacity for lithium-ion battery based on improved increment capacity analysis[J]. China Journal of Highway and Transport, 2022, 35(8): 20-30. | |
25 | 王瑞洁, 惠周利, 杨明. 基于间接健康指标的高斯过程回归对锂电池SOH预测[J]. 储能科学与技术, 2023, 12(2): 560-569. |
WANG R J, HUI Z L, YANG M. Gaussian process regression based on indirect health indicators for SOH estimation of lithium battery[J]. Energy Storage Science and Technology, 2023, 12(2): 560-569. |
[1] | Shaohong ZENG, Weixiong WU, Jizhen LIU, Shuangfeng WANG, Shifeng YE, Zhenyu FENG. A review of research on immersion cooling technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. |
[2] | Xin CHEN, Yunwu LI, Xincheng LIANG, Falin LI, Zhidong ZHANG. Battery health state estimation of combined Transformer-GRU based on modal decomposition [J]. Energy Storage Science and Technology, 2023, 12(9): 2927-2936. |
[3] | Jiwei LI, Ruihan LIU, Taolin LU, Long PAN, Changjun MA, Qingbo LI, Zhiyun ZHAO, Wen YANG, Jingying XIE. Early fault diagnosis of lithium-ion battery packs based on improved local outlier detection and standard deviation method [J]. Energy Storage Science and Technology, 2023, 12(9): 2917-2926. |
[4] | Xiangyang ZHOU, Yingjie HU, Jiahao LIANG, Qijie ZHOU, Kang WEN, Song CHEN, Juan YANG, Jingjing TANG. Preparation and lithium storage characteristics of high-performance anode materials based on spheroidized tailings of natural flake graphite [J]. Energy Storage Science and Technology, 2023, 12(9): 2767-2777. |
[5] | Wanwei JIANG, Chengjing LIANG, Li QIAN, Meicheng LIU, Mengxiang ZHU, Jun MA. Regulating tin-based three-dimensional graphene foam and its performance as a lithium-ion battery anode [J]. Energy Storage Science and Technology, 2023, 12(9): 2746-2751. |
[6] | Anhao ZUO, Ruqing FANG, Zhe LI. Kinetic characterization of electrode materials for lithium-ion batteries via single-particle microelectrodes [J]. Energy Storage Science and Technology, 2023, 12(8): 2457-2481. |
[7] | Yu GUO, Yiwei WANG, Juan ZHONG, Jinqiao DU, Jie TIAN, Yan LI, Fangming JIANG. Fault diagnosis method for microinternal short circuits in lithium-ion batteries based on incremental capacity curve [J]. Energy Storage Science and Technology, 2023, 12(8): 2536-2546. |
[8] | Jiaxing YANG, Hengyun ZHANG, Yidong XU. Heat generation analysis for lithium-ion battery components using electrochemical and thermal coupled model [J]. Energy Storage Science and Technology, 2023, 12(8): 2615-2625. |
[9] | Jilu ZHANG, Yuchen DONG, Qiang SONG, Siming YUAN, Xiaodong GUO. Controllable synthesis and electrochemical mechanism related to polycrystalline and single-crystalline Ni-rich layered LiNi0.9Co0.05Mn0.05O2 cathode materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2382-2389. |
[10] | Qingsong ZHANG, Fangwei BAO, Jiangjao NIU. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270. |
[11] | Shuqin LIU, Xiaoyan WANG, Zhendong ZHANG, Zhenxia DUAN. Experimental and simulation research on liquid-cooling system of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2023, 12(7): 2155-2165. |
[12] | Yubo ZHANG, Youyuan WANG, Dongning HUANG, Ziyi WANG, Weigen CHEN. Prognostic method of lithium-ion battery lifetime degradation under various working conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. |
[13] | Qinpei CHEN, Xuehui WANG, Wenzhong MI. Experiential study on the toxic and explosive characteristics of thermal runaway gas generated in electric-vehicle lithium-ion battery systems [J]. Energy Storage Science and Technology, 2023, 12(7): 2256-2262. |
[14] | Wenda ZAN, Rui ZHANG, Fei DING. Development and application of electrochemical models for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318. |
[15] | Hongsheng GUAN, Cheng QIAN, Binghui XU, Bo SUN, Yi REN. SAM-GRU-based fusion neural network for SOC estimation in lithium-ion batteries under a wide range of operating conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2229-2237. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||