Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (2): 398-430.doi: 10.19799/j.cnki.2095-4239.2022.0521
• Energy Storage Materials and Devices • Previous Articles Next Articles
Wei LIU1(), Zhenming LI1(), Mingyang LIU1, Cenyu YANG1, Chao MEI2, Ying LI2
Received:
2022-09-13
Revised:
2022-10-21
Online:
2023-02-05
Published:
2023-02-24
Contact:
Zhenming LI
E-mail:liuwei3@epri.sgcc.com.cn;lizhenming@epri.sgcc.com.cn
CLC Number:
Wei LIU, Zhenming LI, Mingyang LIU, Cenyu YANG, Chao MEI, Ying LI. Review of high-temperature phase change heat storage material preparation and applications[J]. Energy Storage Science and Technology, 2023, 12(2): 398-430.
Table 1
Thermophysical properties of inorganic salts of some high-temperature phase change materials[6-7, 17-21]"
化合物 | 熔化温度/℃ | 熔化热/(kJ/kg) | 导热系数/[W/(m·K)] | 比热容/[kJ/(kg·K)] |
---|---|---|---|---|
NaNO3 | 306 | 182 | 0.5/—(液固) | —/1.1(液固) |
KNO3 | 334 | 266 | —/0.5 | —/0.953(液固) |
NaOH | 323 | 170 | 0.92/—(液固) | 2.09/2.01(液固) |
KOH | 380 | 149.7 | —/0.5(液固) | — |
Na2CO3 | 854 | 275.7 | — | —/2(液固) |
K2CO3 | 897 | 235.8 | — | —/2(液固) |
96KNO3-4KCl | 320 | 150 | —/0.5(液固) | —/1.21(液固) |
60MgCl2-20.4KCl-19.6NaCl | 380 | 400 | — | —/0.96(液固) |
52MgCl2-48NaCl | 450 | 430 | 0.95/—(液固) | 1/0.92(液固) |
64MgCl2-36KCl | 470 | 388 | 0.83/—(液固) | 0.96/0.84(液固) |
48MgCl2-27CaCl2-25KCl | 487 | 342 | 0.88/—(液固) | 0.92/0.8(液固) |
53BaCl2-28KCl-19NaCl | 542 | 221 | 0.86/—(液固) | 0.8/0.63(液固) |
44Li2CO3-56Na2CO3 | 496 | 370 | 2.09/—(液固) | 2.09/1.8(液固) |
39MgCl2-61NaCl | 435 | 351 | 0.81/—(液固) | 0.96/0.8(液固) |
22Li2CO3-16Na2CO3-62K2CO3 | 580 | 288 | 1.95/—(液固) | 2.09/1.80(液固) |
67CaCl2-33NaCl | 500 | 281 | 1.02/—(液固) | 1/0.84(液固) |
33LiF-67KF | 442 | 618 | 3.98/—(液固) | 1.63/1.34(液固) |
12NaF-59KF-29LiF | 454 | 590 | 4.50/—(液固) | 1.55/1.34(液固) |
20Li2CO3-60Na2CO3-20K2CO3 | 550 | 283 | 1.83/—(液固) | 1.88/1.59(液固) |
54KCl-46ZnCl2 | 432 | 218 | 0.83/—(液固) | 0.88/0.67(液固) |
28KCl-19NaCl-53BaCl2 | 542 | 221 | 0.86/—(液固) | 0.80/0.63(液固) |
48NaCl-52MgCl2 | 450 | 430 | 0.95/—(液固) | 1.00/0.92(液固) |
47BaCl2-24KCl-29CaCl | 551 | 219 | 0.95/—(液固) | 0.84/0.67(液固) |
36KCl-64MgCl2 | 470 | 388 | 0.83/—(液固) | 0.96/0.84(液固) |
33NaCl-67CaCl2 | 500 | 281 | 1.02/—(液固) | 1.00/0.84(液固) |
37MgCl2-63SrCl2 | 535 | 239 | 1.05/—(液固) | 0.80/0.67(液固) |
47Li2CO3-53K2CO3 | 488 | 342 | 1.99/—(液固) | 1.34/1.03(液固) |
17NaF-21KF-62K2CO3 | 520 | 274 | 1.50/—(液固) | 1.38/1.17(液固) |
28Li2CO3-72K2CO3 | 498 | 263 | 1.85/—(液固) | 1.80/1.46(液固) |
51K2CO3-49Na2CO3 | 710 | 163 | 1.73/—(液固) | 1.56/1.67(液固) |
24KCl-47BaCl2-29CaCl2 | 551 | 219 | 0.95/—(液固) | 0.84/0.67(液固) |
32Li2CO3-35K2CO3-Na2CO3 | 397 | 276 | 2.02/—(液固) | 1.63/1.67(液固) |
61KCl-39MgCl2 | 435 | 351 | 0.81/—(液固) | 0.96/0.8(液固) |
40KCl-23KF-37K2CO3 | 528 | 283 | 1.19/—(液固) | 1.26/1(液固) |
35Li2CO3-65K2CO3 | 505 | 344 | 1.89/—(液固) | 1.76/1.34(液固) |
Table 3
Thermophysical properties of metal alloys of some high temperature phase change materials[17]"
金属及金属合金 | 熔化温度/℃ | 熔化热/(kJ/kg) |
---|---|---|
Zn | 419 | 112 |
Al | 661 | 388 |
96Zn-4Al | 381 | 138 |
86.4Al-9.4Si-4.2Sb | 471 | 471 |
59Al-33Mg-6Zn | 443 | 310 |
65.35Al-34.65Mg | 497 | 285 |
60.8Al-33.2Cu-6Mg | 506 | 365 |
64.6Al-28Cu-5.2Si-2.2Mg | 507 | 374 |
68.5Al-26.5Cu-5Si | 525 | 364 |
Mg | 648 | 365 |
46.3Mg-53.7Zn | 341 | 185 |
86Si-12Al | 576 | 560 |
56Si-44Mg | 946 | 757 |
49Zn-45Cu-6Mg | 703 | 176 |
49.1Cu-46.3Al-4.6Si | 571 | 406 |
83.14Al-11.7Si-5.16Mg | 555 | 485 |
64.1Al-28Mg-5.2Si-2.2Cu | 507 | 374 |
66.92Al-33.08Cu | 548 | 372 |
Fig. 1
The DSC dependence of temperature of different compositions (a) 87.8Al-12.2Si, 80Al-20Si, 70Al-30Si, and 60Al-40Si, and (c) 45Al-40Si-15Fe and 17Al-53Si-30Ni with 87.8Al-12.2Si for comparison[26]; (b) The specific heat dependence of temperature of 87.8Al-12.2Si, 80Al-20Si, 70Al-30Si, 60Al-40Si, 45Al-40Si-15Fe, and 17Al-53Si-30Ni[26]; (d) Thermal conductivity of all the compositions: 87.8Al-12.2Si, 80Al-20Si, 70Al-30Si, 60Al-40Si, 45Al-40Si-15Fe, and 17Al-53Si-30Ni[26]"
Fig. 2
(a)The XRD patterns of Mg-Ni-Zn alloys[31],(b)DSC curves of Mg-Ni-Zn alloys; (c)Relative elongation of Mg-Ni-Zn alloys[31]; (d)Temperature dependence of density of Mg-Ni-Zn alloys[31]; (e)Temperatures dependence of the specific heat capacity of Mg-Ni-Zn alloys[31]; (f)Temperatures dependence of the thermal conductivity of Mg-Ni-Zn alloys[31]; (g)—(i) DSC curves of Mg-Ni-Zn alloys at different heating rates[(g)Mg-16Ni-24Zn, (h)Mg-15Ni-31Zn, (i)Mg-20.8Ni-22.6Zn][31]"
Fig. 3
SEM images of (a) expanded graphite; (b) 5%expanded graphite+Ca(NO3)2-NaNO3; (c) 6%expanded graphite+Ca(NO3)2-NaNO3; (d) 7%expanded graphite+Ca(NO3)2-NaNO3[46]; (e) XRD patterns; (f)Thermal conductivities and of the binary nitrate and composite phase change material[46]; (g)Variation of the phase change temperature of the 7%expanded graphite+Ca(NO3)2-NaNO3[46]; (h)DSC curves of the 7%expanded graphite+Ca(NO3)2-NaNO3 before and after 500 thermal cycles[46]"
Fig. 5
SEM images of multi-walled carbon nanotubes(a) and Na2CO3/MgO composite phase change material with added MWCNTs sintered at high temperature (b)[53]; (c)X-ray diffraction patterns of Na2CO3/MgO composite phase change material[53]; (d)Thermal gravity analyses of Na2CO3/MgO composite phase change material[53]"
Fig. 12
(a)Schematic of KNO3/ diatomite composite prepared by mixed sintering method[70]; (b) A flow chart of the novel process for fabricating the MgCl2-KCl/expanded graphite composite phase change material[48]; (c)Schematic of the synthesis of Ca(NO3)2-NaNO3/expanded graphite composite phase change material[46]"
Fig. 15
(a)—(b)Photo of the high temperature phase change storage heater[95]; (c)—(d)Temperature curves with heating power of 1540 W[95]; (e)—(f)Temperature curves with heating power of 1810 W[95]; (g)Temperature curves of heat storage medium[95]; (h)Temperature curves of exterior surfaces of the heaters[95]; (i)Heat discharge rate of the heaters during power off[95]"
Fig. 16
(a)Scheme of the electrical storage heater[96]; (b)Scheme of the electric heater test process[96]; (c)Comparison between experimental and modelling results[96]; (d)Comparison of electrical storage heater total heat storage capacity[96]; (e)Compare the average temperature in the heater with the temperature at the outlet[96]"
Fig. 17
(a)Single tube based component and Concentric tube based component[97]; (b)Contact of rough surface between CPCMs module with presence of gas[97]; (c)Diagrammatic sketches of the experimental apparatus[97]; (d)Comparison of the experimental data and numerical results[97]; (e)Heat storage time and heat storage element density as a function of graphite loading[97]; (f)Effects of surface roughness of CPCMs module on charging and discharging processes[97]; (g)Comparison of two heat storage components based on phase change materials[97]"
Fig. 19
(a)Schematic illustrations of the CPCMs based packed bed TES system[105]; (b)Meshing of the computational domain of the packed bed containing CPCMs[105]; (c)The time evolution of temperature at different locations of the system containing CPCMs and ferric oxide over the charging process[105]; (d)Time evolution of the heat transfer efficiency and heat storage/release efficiency at different graphite loading in the CPCMs during the charging process and discharging process[105]; (e)Time evolutions of the heat transfer efficiency at different operation conditions during the charging process and discharging proces[105]"
1 | 程珊珊. 基于电、煤锅炉联合供暖的弃风消纳策略研究[D]. 沈阳: 沈阳工业大学, 2020. |
CHENG S S. Research on wind power accommodation strategy of combined heating of electric and coal boilers[D]. Shenyang: Shenyang University of Technology, 2020. | |
2 | JACOB R, BELUSKO M, INÉS FERNÁNDEZ A, et al. Embodied energy and cost of high temperature thermal energy storage systems for use with concentrated solar power plants[J]. Applied Energy, 2016, 180: 586-597. |
3 | YANG T Y, KING W P, MILJKOVIC N. Phase change material-based thermal energy storage[J]. Cell Reports Physical Science, 2021, 2(8): doi: 10.1016/j.xcrp.2021.100540. |
4 | HE F, SONG G P, HE X D, et al. Structural and phase change characteristics of inorganic microencapsulated core/shell Al-Si/Al2O3 micro-particles during thermal cycling[J]. Ceramics International, 2015, 41(9): 10689-10696. |
5 | ZHANG G C, LI J Q, CHEN Y F, et al. Encapsulation of copper-based phase change materials for high temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2014, 128: 131-137. |
6 | WEI G S, WANG G, XU C, et al. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1771-1786. |
7 | KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3): 955-970. |
8 | KHARE S, DELL'AMICO M, KNIGHT C, et al. Selection of materials for high temperature latent heat energy storage[J]. Solar Energy Materials and Solar Cells, 2012, 107: 20-27. |
9 | LIU M, FERNÁNDEZ A I, SEGARRA M. Materials for phase change material at high temperature[M]//High Temperature Thermal Storage Systems Using Phase Change Materials. Amsterdam: Elsevier, 2018: 195-230. |
10 | ANSYS. The 21th anniversary celebration of materials selection software, Cambridge[EB/OL]. (2007-08-15)[2013-05-29].http://www.newmaker.com/. |
11 | MISHRA R K, VERMA K, MISHRA V, et al. A review on carbon-based phase change materials for thermal energy storage[J]. Journal of Energy Storage, 2022, 50: doi: 10.1016/j.est.2022.104166. |
12 | LIU M, OMARAA E S, QI J, et al. Review and characterisation of high-temperature phase change material candidates between 500 C and 700 ℃[J]. Renewable and Sustainable Energy Reviews, 2021, 150: doi: 10.1016/j.rser.2021.111528. |
13 | ZHONG L M, ZHANG X W, LUAN Y, et al. Preparation and thermal properties of porous heterogeneous composite phase change materials based on molten salts/expanded graphite[J]. Solar Energy, 2014, 107: 63-73. |
14 | TIAN H Q, WANG W L, DING J, et al. Thermal conductivities and characteristics of ternary eutectic chloride/expanded graphite thermal energy storage composites[J]. Applied Energy, 2015, 148: 87-92. |
15 | BAUER T, DRTE L, ULRIKE K, et al. Sodium nitrate for high temperature latent heat storage[C]//The 11 th International Conference on Thermal Energy Storage-Effstock. DLR, 2009. |
16 | HEIDENREICH G R, PAREKH M B. Thermal energy storage for organic Rankine cycle solar dynamic space power systems[J]. Proceedings of the Intersociety Energy Conversion Engineering Conference, 1986: 791-797. |
17 | CÁRDENAS B, LEÓN N. High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 724-737. |
18 | MARIANOWSKI L G, MARU H C. Latent heat thermal energy storage systems above 450 C[C]//12th Intersociety Energy Conversion Engineering Conference, 1977, 1: 555-566. |
19 | DULLES J F, Maru H C. Molten-salt thermal-energy storage systems[R]. CHO (Chicago Operations Office, Argonne, IL (United States)), 1977:1-129. |
20 | VERDIEV N N, ARBUKHANOVA P A, ISKENDEROV E G. NaF-NaBr-Na2MoO4 and KF-KCl-KBr ternary systems[J]. Russian Journal of Inorganic Chemistry, 2009, 54(1): 128-133. |
21 | PETRI R, ONG E, MARTIN J. High temperature composite thermal energy storage (TES) systems for industrial applications[R]. Institute of Gas Technology, Chicago, IL (USA); Oak Ridge National Lab. TN (USA), 1986 |
22 | MISRA A K. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973-1400 K[C]//22nd Intersociety Energy Conversion Engineering Conference. August 10-14, 1987, Philadelphia, Pennsylvania. Reston, Virginia: AIAA, 1987: doi: 10.2514/6.1987-9226. |
23 | BIRCHENALL C E, TELKES M. Thermal storage in metals[J]. Sharing the Sun: Solar Technology in the Seventies, 1976, 8(8): 138-154. |
24 | RIECHMAN A F. Heat storage in eutectic alloys[J]. Metallurgical Transactions A, 1980, 11(8): 1415-1420. |
25 | ACHARD P. Heat Storage at 450 deg C in Aluminum-Magnesium Alloys[J]. Rational Utilization of Energy, 1981: 39-46. |
26 | WANG Z Y, WANG H, LI X B, et al. Aluminum and silicon based phase change materials for high capacity thermal energy storage[J]. Applied Thermal Engineering, 2015, 89: 204-208. |
27 | HUANG Z G, MEI S H, WU G Z. Prospect of metal phase change thermal energy storage technologies[J]. New Energy 1999(4): 1-5. |
28 | SUN J Q, ZHANG R Y, LIU Z P, et al. Thermal reliability test of Al-34%Mg-6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling[J]. Energy Conversion and Management, 2007, 48(2): 619-624. |
29 | RODRÍGUEZ-ASEGUINOLAZA J, BLANCO-RODRÍGUEZ P, RISUEÑO E, et al. Thermodynamic study of the eutectic Mg49-Zn51 alloy used for thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2014, 117(1): 93-99. |
30 | BLANCO-RODRÍGUEZ P, RODRÍGUEZ-ASEGUINOLAZA J, RISUEÑO E, et al. Thermophysical characterization of Mg-51%Zn eutectic metal alloy: A phase change material for thermal energy storage in direct steam generation applications[J]. Energy, 2014, 72: 414-420. |
31 | CHEN H X, LI J J, LI Y Y, et al. Microstructure and phase transition kinetics of Mg-Ni-Zn alloy phase change thermal storage materials[J]. Journal of Alloys and Compounds, 2020, 829: doi: 10.1016/j.jallcom.2020.154574. |
32 | FANG D, CHENG X M, LI Y Y, et al. Microstructure and thermal characteristics of Mg-Sn alloys as phase change materials for thermal energy storage[J]. RSC Advances, 2016, 6(98): 96327-96333. |
33 | FANG D, SUN Z, LI Y Y, et al. Preparation, microstructure and thermal properties of MgBi alloys as phase change materials for thermal energy storage[J]. Applied Thermal Engineering, 2016, 92: 187-193. |
34 | SUN Z, LI L F, CHENG X M, et al. Thermal properties and the prospects of thermal energy storage of Mg-25%Cu-15%Zn eutectic alloy as phase change material[J]. Materials (Basel, Switzerland), 2021, 14(12): doi: 10.3390/ma14123296. |
35 | RISUEÑO E, DOPPIU S, RODRÍGUEZ-ASEGUINOLAZA J, et al. Experimental investigation of Mg-Zn-Al metal alloys for latent heat storage application[J]. Journal of Alloys and Compounds, 2016, 685: 724-732. |
36 | SABOL J C, MISIOLEK W Z, OZTEKIN A, et al. Characterization of intermediate phases formed between solid nickel and liquid zinc during use as an encapsulated phase change material in solar thermal energy storage systems[J]. Metallography, Microstructure, and Analysis, 2012, 1(5): 208-216. |
37 | ADINBERG R, ZVEGILSKY D, EPSTEIN M. Heat transfer efficient thermal energy storage for steam generation[J]. Energy Conversion and Management, 2010, 51(1): 9-15. |
38 | TAO Y B, HE Y L. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245-259. |
39 | ZHAO C Y, WU Z G. Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite[J]. Solar Energy Materials and Solar Cells, 2011, 95(2): 636-643. |
40 | 祁先进. 金属基相变复合蓄热材料的实验研究[D]. 昆明: 昆明理工大学, 2005. |
QI X J. Experimental study on composite heat storage material with metal and molten[D]. Kunming: Kunming University of Science and Technology, 2005. | |
41 | ZHANG P, XIAO X, MENG Z N, et al. Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement[J]. Applied Energy, 2015, 137: 758-772. |
42 | SINGH D, KIM T, ZHAO W H, et al. Development of graphite foam infiltrated with MgCl2 for a latent heat based thermal energy storage (LHTES) system[J]. Renewable Energy, 2016, 94: 660-667. |
43 | LAFDI K, MESALHY O, ELGAFY A. Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications[J]. Carbon, 2008, 46(1): 159-168. |
44 | ZHAO W H, FRANCE D M, YU W H, et al. Phase change material with graphite foam for applications in high-temperature latent heat storage systems of concentrated solar power plants[J]. Renewable Energy, 2014, 69: 134-146. |
45 | PY X, OLIVES R, MAURAN S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material[J]. International Journal of Heat and Mass Transfer, 2001, 44(14): 2727-2737. |
46 | REN Y X, XU C, YUAN M D, et al. Ca(NO3)2-NaNO3/expanded graphite composite as a novel shape-stable phase change material for mid- to high-temperature thermal energy storage[J]. Energy Conversion and Management, 2018, 163: 50-58. |
47 | TIAN H Q, WANG W L, DING J, et al. Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials[J]. Solar Energy Materials and Solar Cells, 2016, 149: 187-194. |
48 | LIU J W, WANG Q H, LING Z Y, et al. A novel process for preparing molten salt/expanded graphite composite phase change blocks with good uniformity and small volume expansion[J]. Solar Energy Materials and Solar Cells, 2017, 169: 280-286. |
49 | ZHAO Y J, WANG R Z, WANG L W, et al. Development of highly conductive KNO3/NaNO3 composite for TES (thermal energy storage)[J]. Energy, 2014, 70: 272-277. |
50 | XU T, LI Y T, CHEN J Y, et al. Preparation and thermal energy storage properties of LiNO3-KCl-NaNO3/expanded graphite composite phase change material[J]. Solar Energy Materials and Solar Cells, 2017, 169: 215-221. |
51 | PETRI R, ONG E, MARIANOWSKI L. High temperature composite thermal storage systems for industrial applications[R]. Institute of Gas Technology, Chicago, IL (USA); Oak Ridge National Lab. TN (USA), 1985. |
52 | GOKON N, NAKANO D, INUTA S, et al. High-temperature carbonate/MgO composite materials as thermal storage media for double-walled solar reformer tubes[J]. Solar Energy, 2008, 82(12): 1145-1153. |
53 | YE F, GE Z W, DING Y L, et al. Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage[J]. Particuology, 2014, 15: 56-60. |
54 | GE Z W, YE F, CAO H, et al. Carbonate-salt-based composite materials for medium-and high-temperature thermal energy storage[J]. Particuology, 2014, 15: 77-81. |
55 | JIANG Z, JIANG F, LI C, et al. A form stable composite phase change material for thermal energy storage applications over 700 ℃[J]. Applied Sciences, 2019, 9(5): doi: 10.3390/app9050814. |
56 | SANG L X, LI F, XU Y W. Form-stable ternary carbonates/MgO composite material for high temperature thermal energy storage[J]. Solar Energy, 2019, 180: 1-7. |
57 | JIANG Y F, SUN Y P, LI S A. Performance of novel Na2SO4-NaCl-ceramic composites as high temperature phase change materials for solar power plants (Part II)[J]. Solar Energy Materials and Solar Cells, 2019, 194: 285-294. |
58 | JIANG Y F, SUN Y P, JACOB R D, et al. Novel Na2SO4-NaCl-ceramic composites as high temperature phase change materials for solar thermal power plants (Part I)[J]. Solar Energy Materials and Solar Cells, 2018, 178: 74-83. |
59 | ZHOU W B, LI R G, ZHOU W, et al. Fabrication of Al2O3-NaCl composite heat storage materials by one-step synthesis method[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2016, 31(5): 950-954. |
60 | QIAN T T, LI J H, MIN X, et al. Radial-like mesoporous silica sphere: A promising new candidate of supporting material for storage of low-, middle-, and high-temperature heat[J]. Energy, 2016, 112: 1074-1083. |
61 | NOTTER W, LECHNER T, GROß U, et al. Thermophysical properties of the composite ceramic-salt system (SiO2/Na2SO4)[J]. Thermochimica Acta, 1993, 218: 455-463. |
62 | 李爱菊, 王毅. 无机盐/陶瓷基复合蓄热材料高温稳定性的研究[J]. 材料导报, 2011, 25(12): 78-81. |
LI A J, WANG Y. Study on the high temperature stability of salt/ceramic composite heat storage material[J]. Materials Review, 2011, 25(12): 78-81. | |
63 | 吴建锋, 李剑, 徐晓虹, 等. NaCl/SiC泡沫陶瓷高温复合相变蓄热材料[J]. 武汉理工大学学报, 2009, 31(17): 70-73. |
WU J F, LI J, XU X H, et al. Preparation of molten salts/ceramic-foam composites by melt infiltration method as energy storagy materials at high temperature[J]. Journal of Wuhan University of Technology, 2009, 31(17): 70-73. | |
64 | LI Y, GUO B, HUANG G F, et al. Characterization and thermal performance of nitrate mixture/SiC ceramic honeycomb composite phase change materials for thermal energy storage[J]. Applied Thermal Engineering, 2015, 81: 193-197. |
65 | XU G Z, LENG G H, YANG C Y, et al. Sodium nitrate - Diatomite composite materials for thermal energy storage[J]. Solar Energy, 2017, 146: 494-502. |
66 | DENG Y, LI J H, NIAN HONGEN. Expanded vermiculite: A promising natural encapsulation material of LiNO3, NaNO3, and KNO3 phase change materials for medium-temperature thermal energy storage[J]. Advanced Engineering Materials, 2018, 20(8): doi: 10.1002/adem.201800135. |
67 | LENG G H, QIAO G, JIANG Z, et al. Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2018, 217: 212-220. |
68 | QIAN T T, LI J H, MIN X, et al. Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material[J]. Energy Conversion and Management, 2015, 98: 34-45. |
69 | QIN Y, LENG G H, YU X, et al. Sodium sulfate-diatomite composite materials for high temperature thermal energy storage[J]. Powder Technology, 2015, 282: 37-42. |
70 | DENG Y, LI J H, QIAN T T, et al. Preparation and characterization of KNO3/diatomite shape-stabilized composite phase change material for high temperature thermal energy storage[J]. Journal of Materials Science & Technology, 2017, 33(2): 198-203. |
71 | LIU R P, ZHANG F, SU W M, et al. Impregnation of porous mullite with Na2SO4 phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2015, 134: 268-274. |
72 | LV P Z, LIU C Z, RAO Z H. Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 707-726. |
73 | LI R G, ZHU J Q, ZHOU W B, et al. Thermal compatibility of Sodium Nitrate/Expanded Perlite composite phase change materials[J]. Applied Thermal Engineering, 2016, 103: 452-458. |
74 | LI R G, ZHU J Q, ZHOU W B, et al. Thermal properties of sodium nitrate-expanded vermiculite form-stable composite phase change materials[J]. Materials & Design, 2016, 104: 190-196. |
75 | 顾华志, 韩藏娟, 张美杰, 等. 高温相变蓄热材料的封装研究及应用展望[J]. 耐火材料, 2021, 55(6): 528-532, 538. |
GU H Z, HAN C J, ZHANG M J, et al. Package research and application of high-temperature phase change heat storage materials[J]. Refractories, 2021, 55(6): 528-532, 538. | |
76 | JIANG F, ZHANG L L, SHE X H, et al. Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: doi: 10.1016/j.rser.2019.109539. |
77 | PINCEMIN S, OLIVES R, PY X, et al. Highly conductive composites made of phase change materials and graphite for thermal storage[J]. Solar Energy Materials and Solar Cells, 2008, 92(6): 603-613. |
78 | SINGH D, YU W H, ZHAO W H, et al. Development and prototype testing of MgCl2/graphite foam latent heat thermal energy storage system[J]. Solar Energy, 2018, 159: 270-282. |
79 | WU Z G, ZHAO C Y. Experimental investigations of porous materials in high temperature thermal energy storage systems[J]. Solar Energy, 2011, 85(7): 1371-1380. |
80 | 何镐东, 杨林, 曹建新. 黄磷渣与硫酸钠-氯化钠制备高温复合相变储能材料[J/OL]. 无机盐工业. [2022-07-24]. https://doi.org/10.19964/j.issn.1006-4990.2022-0140. |
HE H D, YANG L, CAO J X. Preparation of high temperature composite phase change energy storage materials by yellow phosphorus slag and Na2SO4-NaCl[J/OL]. Inorganic Chemicals Industry. [2022-07-24]. https://doi.org/10.19964/j.issn.1006-4990. 2022-0140. | |
81 | 刘汉昌, 朱桂花, 吕硕, 等. 相变介质组成对粉煤灰基高温定形复合相变材料蓄热性能的影响[J]. 硅酸盐通报, 2022, 41(2): 597-606. |
LIU H C, ZHU G H, LYU S, et al. Influence of phase change medium composition on heat storage performance of fly ash-based high-temperature shaped composite phase change materials[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 597-606. | |
82 | 韩金鹏, 朱桂花, 吕硕, 等. 相变介质粒径对粉煤灰基高温定形复合相变材料蓄热性能的影响[J]. 煤炭转化, 2019, 42(1): 78-86. |
HAN J P, ZHU G H, LYU S, et al. Effects of particle size of phase change medium on thermal storage performance of fly ash-based high temperature formstable composite phase change material[J]. Coal Conversion, 2019, 42(1): 78-86. | |
83 | 焦勇. Al-Si/Al2O3高温复合相变蓄热材料的制备与性能研究[D]. 西安: 西安建筑科技大学, 2012. |
JIAO Y. Study on preparation and properties of Al-Si/Al2O3 high temperature phase change heat storage materials[D]. Xi'an: Xi'an University of Architecture and Technology, 2012. | |
84 | 王建宏. 粉煤灰基高温复合相变蓄热材料的制备与性能研究[D]. 西安: 西安建筑科技大学, 2013. |
WANG J H. Study on preparation and properties of high temperature fly ash base phase change heat storage composite materials[D]. Xi'an: Xi'an University of Architecture and Technology, 2013. | |
85 | HAN C J, GU H Z, ZHANG M J, et al. Preparation and characterization of a heat storage ceramic with Al-12 wt% Si as the phase change material[J]. Ceramics International, 2020, 46(18): 28042-28052. |
86 | GUO Q, WANG T. Preparation and characterization of sodium sulfate/silica composite as a shape-stabilized phase change material by Sol-gel method[J]. Chinese Journal of Chemical Engineering, 2014, 22(3): 360-364. |
87 | LAI C C, LIN S M, CHU Y D, et al. Tunable endothermic plateau for enhancing thermal energy storage obtained using binary metal alloy particles[J]. Nano Energy, 2016, 25: 218-224. |
88 | ORTEGA-FERNÁNDEZ I, RODRÍGUEZ-ASEGUINOLAZA J. Thermal energy storage for waste heat recovery in the steelworks: The case study of the REslag project[J]. Applied Energy, 2019, 237: 708-719. |
89 | YU Q H, JIANG Z, CONG L, et al. A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2019, 237: 367-377. |
90 | DAL MAGRO F, MENEGHETTI A, NARDIN G, et al. Enhancing energy recovery in the steel industry: Matching continuous charge with off-gas variability smoothing[J]. Energy Conversion and Management, 2015, 104: 78-89. |
91 | DAL MAGRO F, BENASCIUTTI D, NARDIN G. Thermal stress analysis of PCM containers for temperature smoothing of waste gas[J]. Applied Thermal Engineering, 2016, 106: 1010-1022. |
92 | DAL MAGRO F, SAVINO S, MENEGHETTI A, et al. Coupling waste heat extraction by phase change materials with superheated steam generation in the steel industry[J]. Energy, 2017, 137: 1107-1118. |
93 | ANDERSSON O, RYDELL L, ALGOTSSON T. Efficient usage of waste heat by applying a seasonal energy storage (BTES) at ITT Water & Wastewater AB, Emmaboda, Sweden[J]. Proceedings of Effstock, 2009: 14-17. |
94 | KOIDE H, KURNIAWAN A, TAKAHASHI T, et al. Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material[J]. Energy, 2022, 238: doi: 10.1016/j.energy.2021.121746. |
95 | WANG X, LIU J, ZHANG Y P, et al. Experimental research on a kind of novel high temperature phase change storage heater[J]. Energy Conversion and Management, 2006, 47(15/16): 2211-2222. |
96 | 李传, 司艳阳, 冷光辉, 等. 高温复合相变材料储热电暖器的储热性能[J]. 储能科学与技术, 2017, 6(4): 739-747. |
LI C, SI Y Y, LENG G H, et al. Charging behavior of an electrical storage heater using a high temperature composite phase change material[J]. Energy Storage Science and Technology, 2017, 6(4): 739-747. | |
97 | ZHAO B, LI C, JIN Y, et al. Heat transfer performance of thermal energy storage components containing composite phase change materials[J]. IET Renewable Power Generation, 2016, 10(10): 1515-1522. |
98 | JIANG Y F, LIU M, SUN Y P. Review on the development of high temperature phase change material composites for solar thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 203: doi: 10.1016/j.solmat.2019.110164. |
99 | ZANGANEH G, COMMERFORD M, HASELBACHER A, et al. Stabilization of the outflow temperature of a packed-bed thermal energy storage by combining rocks with phase change materials[J]. Applied Thermal Engineering, 2014, 70(1): 316-320. |
100 | MATHUR A, KASETTY R, OXLEY J, et al. Using encapsulated phase change salts for concentrated solar power plant[J]. Energy Procedia, 2014, 49: 908-915. |
101 | STEINMANN W D, TAMME R. Latent heat storage for solar steam systems[J]. Journal of Solar Energy Engineering, 2008, 130(1): doi: 10.1115/1.2804624. |
102 | ZHANG H L, BAEYENS J, DEGRÈVE J, et al. Latent heat storage with tubular-encapsulated phase change materials (PCMs)[J]. Energy, 2014, 76: 66-72. |
103 | 陈举飞. 铝基高温相变储热材料的储热性能与实际应用研究[D]. 长沙: 中南大学, 2013. |
CHEN J F. The research on heat storage performance and practical application of aluminum-based high temperature phase change thermal storage material[D]. Changsha: Central South University, 2013. | |
104 | MEHRPOOYA M, GHORBANI B, SADEGHZADEH M. Hybrid solar parabolic dish power plant and high-temperature phase change material energy storage system[J]. International Journal of Energy Research, 2019, 43(10): 5405-5420. |
105 | LI C, LI Q, DING Y L. Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials[J]. Applied Energy, 2019, 247: 374-388. |
106 | 张永学, 王梓熙, 鲁博辉, 等. 雪花型翅片提高相变储热单元储/放热性能[J]. 储能科学与技术, 2022, 11(2): 521-530. |
ZHANG Y X, WANG Z X, LU B H, et al. Enhancement of charging and discharging performance of a latent-heat thermal-energy storage unit using snowflake-shaped fins[J]. Energy Storage Science and Technology, 2022, 11(2): 521-530. | |
107 | 金光, 肖安汝, 刘梦云. 相变储能强化传热技术的研究进展[J]. 储能科学与技术, 2019, 8(6): 1107-1115. |
JIN G, XIAO A R, LIU M Y. Research progress on heat transfer enhancement technology of phase change energy storage[J]. Energy Storage Science and Technology, 2019, 8(6): 1107-1115. | |
108 | 王倩蓉, 李正贵, 卢昌燊, 等. 翅片式相变储能器内赤藻糖醇蓄热性能研究[J]. 热能动力工程, 2021, 36(2): 49-56. |
WANG Q R, LI Z G, LU C S, et al. Study on the thermal storage performance of erythritol in a fin type phase change energy storage device[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(2): 49-56. | |
109 | 陈东明. 管壳式蓄热器与复合相变材料的强化传热特性研究[D]. 青岛: 青岛科技大学, 2022. |
CHEN D M. Study on the enhanced heat transfer characteristics of shell-and-tube latent heat exchanger and composite phase change material[D]. Qingdao: Qingdao University of Science & Technology, 2022. | |
110 | 李亚强. 热电厂高温相变蓄热装置蓄放热特性的研究[D]. 吉林: 东北电力大学, 2022. |
LI Y Q. Study on heat storage and release characteristics of high temperature phase change heat storage device in heating and power plent[D]. Jilin: Northeast Dianli University, 2022. | |
111 | 陈园园. 新型相变蓄热换热器的设计与传热特性分析[D]. 郑州: 华北水利水电大学, 2020. |
CHEN Y Y. Design and analysis of heat transfer performance of a new phase change heat storage exchanger(PCHSE)[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2020. | |
112 | 侯普民, 茅靳丰, 刘蓉蓉, 等. 环形相变单元的蓄热装置设计及运行特性[J]. 制冷学报, 2018, 39(1): 98-107. |
HOU P M, MAO J F, LIU R R, et al. Design and operating characteristics of heat storage device for annular unit[J]. Journal of Refrigeration, 2018, 39(1): 98-107. | |
113 | SEDDEGH S, WANG X L, HENDERSON A D. A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials[J]. Applied Thermal Engineering, 2016, 93: 348-358. |
[1] | Xueqing SHEN, Wei CHEN. Thermal management performance of batteries with embedded tree-like fins for phase transition layers [J]. Energy Storage Science and Technology, 2023, 12(2): 459-467. |
[2] | Jinmei DONG, Qiyuan LIU, Fang WU, Lirui JIA, Jing WEN, Chenggong CHANG, Weixin ZHENG, Xueying XIAO. Phase change characteristics and proportion adjustment of fatty acid binary energy storage materials [J]. Energy Storage Science and Technology, 2023, 12(2): 349-356. |
[3] | Qianjun MAO, Yuanyuan ZHU. Study on heat storage performance of novel bifurcated fins to strengthen shell-and-tube energy storage tanks [J]. Energy Storage Science and Technology, 2023, 12(1): 69-78. |
[4] | Lexian DONG, Qun ZHENG, Yue HUANG, Zhipeng TIAN, Jianping LIU, Chao WANG, Bo LIANG, Libin LEI. Research progress on cutting-edge technology of tubular solid oxide fuel cells [J]. Energy Storage Science and Technology, 2023, 12(1): 131-138. |
[5] | Junlei WANG, Diling ZHANG, Kun WANG, Dongdong XU, Xianggui XU, Hua YAO, Wenwei LIU, Yun HUANG. Carbonates/blast furnace slag form-stable phase change materials [J]. Energy Storage Science and Technology, 2022, 11(9): 3028-3034. |
[6] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
[7] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. |
[8] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
[9] | Jie XUE, Jun ZHANG, Zhao DU, Rukun HU, Xiaohu YANG. A numerical simulation study on the heat-storage performance of a flat-bottom heat storage tank [J]. Energy Storage Science and Technology, 2022, 11(12): 3855-3861. |
[10] | Qi ZHANG, Yujing WANG, Yinlei LI, Chongyang LIU. A novel composite phase change material with cold storage and insulation and its application [J]. Energy Storage Science and Technology, 2022, 11(10): 3133-3141. |
[11] | Jin CHAI, Jun WANG, Qiqiang NI. Experiment on heat transfer performance of phase change materials strengthened by nanoparticles and fins [J]. Energy Storage Science and Technology, 2022, 11(10): 3161-3170. |
[12] | Yanghui CHANG, Zhigao SUN. Preparation and properties of pentadecane microcapsule latent heat functional fluid [J]. Energy Storage Science and Technology, 2022, 11(10): 3123-3132. |
[13] | Xiaoguang ZHANG, Xiaonan PAN, Jinming LI, Li LIU, Yan HE. Effect of battery arrangement on the phase change thermal management performance of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(1): 127-135. |
[14] | Enda CI, Hui WANG, Xiaoqing LI, Ying ZHANG, Zhenying ZHANG, Jianqiang LI. Preparation and property enhancement of magnesium nitrate hexahydrate-lithium nitrate eutectic/expanded graphite composite phase change materials [J]. Energy Storage Science and Technology, 2022, 11(1): 30-37. |
[15] | Zhiguo AN, Xian ZHANG, Hui ZHU, Chunjie ZHANG. Heat dissipation performance of honeycomb-like thermal management system combined CPCM with water cooling for lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 211-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||