Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (3): 654-660.doi: 10.19799/j.cnki.2095-4239.2022.0683
• Energy Storage Materials and Devices • Previous Articles Next Articles
Heqing TIAN(), Zhaoyang KOU, Junjie ZHOU, Yinsheng YU()
Received:
2022-11-18
Revised:
2022-12-02
Online:
2023-03-05
Published:
2023-04-14
Contact:
Yinsheng YU
E-mail:tianhq@zzu.edu.cn;yinshengyu@zzu.edu.cn
CLC Number:
Heqing TIAN, Zhaoyang KOU, Junjie ZHOU, Yinsheng YU. Molecular dynamics simulation of structure and thermal properties of LiCl-KCl molten salt nanofluids[J]. Energy Storage Science and Technology, 2023, 12(3): 654-660.
Table 1
BMH parameters for LiCl-KCl and Al2O3[17-18]"
Pair | Aij /(kcal/mol) | ρij /nm | σij /nm | Cij /(nm6·kcal/mol) | Dij /(nm8·kcal/mol) |
---|---|---|---|---|---|
Li-Li | 9.7266 | 0.03425 | 0.1632 | 1.0504×10-6 | 0.4317×10-8 |
Li-K | 7.689 | 0.03396 | 0.2279 | 1.91641×10-5 | 1.22097×10-7 |
Li-Cl | 6.687 | 0.03425 | 0.2401 | 2.87769×10-5 | 3.45326×10-7 |
K-K | 6.0782 | 0.03367 | 0.2926 | 3.49639×10-4 | 3.453225×10-6 |
K-Cl | 4.8626 | 0.03367 | 0.3048 | 6.90645×10-4 | 1.050356×10-5 |
Cl-Cl | 3.6473 | 0.03402 | 0.317 | 1.6757854×10-3 | 3.3659592×10-5 |
Al-Al | 0.066783 | 0.0068 | 0.15704 | 3.23548×10-4 | 0 |
Al-O | 0.172715 | 0.0164 | 0.26067 | 7.9621×10-4 | 0 |
O-O | 0.276344 | 0.0263 | 0.3643 | 1.959372×10-3 | 0 |
1 | GUDE V G. Energy storage for desalination processes powered by renewable energy and waste heat sources[J]. Applied Energy, 2015, 137: 877-898. |
2 | MAHDI J M, NSOFOR E C. Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins[J]. Applied Energy, 2018, 211: 975-986. |
3 | SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345. |
4 | SAID M A, HASSAN H. Effect of using nanoparticles on the performance of thermal energy storage of phase change material coupled with air-conditioning unit[J]. Energy Conversion and Management, 2018, 171: 903-916. |
5 | 李昭, 李宝让, 崔柳, 等. 高温熔盐基纳米流体热物性的稳定性研究[J]. 储能科学与技术, 2020, 9(6): 1775-1783. |
LI Z, LI B R, CUI L, et al. Stability of the thermal performances of molten salt-based nanofluid[J]. Energy Storage Science and Technology, 2020, 9(6): 1775-1783. | |
6 | WEI X L, YIN Y, QIN B, et al. Preparation and enhanced thermal conductivity of molten salt nanofluids with nearly unaltered viscosity[J]. Renewable Energy, 2020, 145: 2435-2444. |
7 | HAN D M, GUENE LOUGOU B, XU Y T, et al. Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage[J]. Applied Energy, 2020, 264: doi: 10.1016/j.apenergy.2020.114674. |
8 | HAN D M, LOUGOU B G, SHUAI Y, et al. Study of thermophysical properties of chloride salts doped with CuO nanoparticles for solar thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2022, 234: doi: 10.1016/j.solmat.2021.111432. |
9 | CHEN X, WU Y T, ZHANG L D, et al. Experimental study on thermophysical properties of molten salt nanofluids prepared by high-temperature melting[J]. Solar Energy Materials and Solar Cells, 2019, 191: 209-217. |
10 | YU Y S, ZHAO C Y, TAO Y B, et al. Superior thermal energy storage performance of NaCl-SWCNT composite phase change materials: A molecular dynamics approach[J]. Applied Energy, 2021, 290: doi: 10.1016/j.apenergy.2021.116799. |
11 | XIAN L, CHEN L, TIAN H Q, et al. Enhanced thermal energy storage performance of molten salt for the next generation concentrated solar power plants by SiO2 nanoparticles: A molecular dynamics study[J]. Applied Energy, 2022, 323: doi: 10.1016/j.apenergy.2022.119555. |
12 | PAN G C, DING J, WANG W L, et al. Molecular simulations of the thermal and transport properties of alkali chloride salts for high-temperature thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2016, 103: 417-427. |
13 | FUMI F G, TOSI M P. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—I[J]. Journal of Physics and Chemistry of Solids, 1964, 25(1): 31-43. |
14 | 姜涛, 王宁, 程长明, 等. LiCl-KCl-CeCl3熔盐结构与热力学的分子动力学模拟[J]. 物理化学学报, 2016, 32(3): 647-655. |
JIANG T, WANG N, CHENG C M, et al. Molecular dynamics simulation on the structure and thermodynamics of molten LiCl-KCl-CeCl3[J]. Acta Physico-Chimica Sinica, 2016, 32(3): 647-655. | |
15 | CACCAMO C, DIXON M. Molten alkali-halide mixtures: A molecular-dynamics study of Li/KCl mixtures[J]. Journal of Physics C: Solid State Physics, 1980, 13(10): 1887-1900. |
16 | LARSEN B, FØRLAND T, SINGER K. A Monte Carlo calculation of thermodynamic properties for the liquid NaCl+KCl mixture[J]. Molecular Physics, 1973, 26(6): 1521-1532. |
17 | ZHOU W N, YANG Z X, FENG Y H, et al. Insights into the thermophysical properties and heat conduction enhancement of NaCl-Al2O3 composite phase change material by molecular dynamics simulation[J]. International Journal of Heat and Mass Transfer, 2022, 198: doi: 10.1016/j.ijheatmasstransfer.2022.123422. |
18 | XIE W J, DING J, PAN G, et al. Heat and mass transportation properties of binary chloride salt as a high-temperature heat storage and transfer media[J]. Solar Energy Materials and Solar Cells, 2020, 209: doi: 10.1016/j.solmat.2020.110415. |
19 | MÜLLER-PLATHE F, BORDAT P. Reverse non-equilibrium molecular dynamics[M]//Novel methods in soft matter simulations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 310-326. |
20 | CUI W Z, SHEN Z J, YANG J G, et al. Molecular dynamics simulation on the microstructure of absorption layer at the liquid-solid interface in nanofluids[J]. International Communications in Heat and Mass Transfer, 2016, 71: 75-85. |
21 | LI Z, CUI L, LI B R, et al. Enhanced heat conduction in molten salt containing nanoparticles: Insights from molecular dynamics[J]. International Journal of Heat and Mass Transfer, 2020, 153: doi: 10.1016/j.ijheatmasstransfer.2020.119578. |
22 | SARKAR S, SELVAM R P. Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids[J]. Journal of Applied Physics, 2007, 102(7): doi: 10.1063/1.2785009. |
23 | WILLIAMS D F, TOTH L M, CLARNO K T. Assessment of candidate molten salt coolants for the advanced high-temperature reactor[R]. Tennessee: Oak Ridge National Laboratory, 2006. |
24 | VAN ARTSDALEN E R, YAFFE I S. Electrical conductance and density of molten salt systems: KCl-LiCl, KCl-NaCl and KCl-KI[J]. The Journal of Physical Chemistry, 1955, 59(2): 118-127. |
25 | 王佳, 孙泽, 路贵民, 等. 碱金属氯化物二元熔盐密度的分子动力学模拟研究[J]. 华东理工大学学报(自然科学版), 2016, 42(6): 771-781. |
WANG J, SUN Z, LU G M, et al. Molecular dynamics simulation for the densities of molten binary alkali metal chlorides[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2016, 42(6): 771-781. | |
26 | YU Y S, TAO Y B, ZHAO C Y, et al. Thermal storage performance enhancement and regulation mechanism of KNO3-SWCNT based composite phase change materials[J]. International Journal of Heat and Mass Transfer, 2021, 181: doi: 10.1016/j.ijheatmasstransfer.2021.121870. |
27 | ZHANG J, FULLER J, AN Q. Coordination and thermophysical properties of transition metal chloro complexes in LiCl-KCl eutectic[J]. The Journal of Physical Chemistry B, 2021, 125(31): 8876-8887. |
[1] | Huimin ZHANG, Jing WANG, Yibo WANG, Jiaxin ZHENG, Jingyi QIU, Gaoping CAO, Hao ZHANG. Multiscale modeling of the SEI of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 366-382. |
[2] | Baocun DU, Lijuan HUANG, Yonggang LEI, Chongfang SONG, Fei WANG. Dynamic study on the thermal and stress performances of the molten salt packed-bed thermal storage tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2141-2150. |
[3] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
[4] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
[5] | Peiping YU, Liang XU, Bingyun MA, Qintao SUN, Hao YANG, Yue LIU, Tao CHENG. Multiscale simulation of a solid electrolyte interphase [J]. Energy Storage Science and Technology, 2022, 11(3): 921-928. |
[6] | Zhenyi WANG, Sai ZHANG, Shiwang HU. Fractal modeling and thermal chemical coupling of electrode microstructure of lithium battery [J]. Energy Storage Science and Technology, 2022, 11(11): 3574-3582. |
[7] | Cancan ZHANG, Songtao HAN, Yuting WU, Yuanwei LU, Junnan NIU. Nitrate molten salt-based nanofluid flow and heat transfer characteristics in twisted tube [J]. Energy Storage Science and Technology, 2022, 11(11): 3641-3648. |
[8] | Hui WANG, Jun LI, Peiwang ZHU, Jian WANG, Chunlin ZHANG. Hundred-megawatt molten salt heat storage system for deep peak shaving of thermal power plant [J]. Energy Storage Science and Technology, 2021, 10(5): 1760-1767. |
[9] | Cong HE, Yuanwei LU, Wenbing SONG, Xiaotong CHEN, Yuting WU, Zhansheng FAN. The phase diagram prediction and experimental study of ternary same cation systems [J]. Energy Storage Science and Technology, 2021, 10(5): 1729-1734. |
[10] | Xiaotong CHEN, Yuanwei LU, Cong HE, Wenbing SONG, Yuting WU, Guichun YANG. Heat-release stability of single tank molten salt heat storage system based on continuous regulation of heat exchange area [J]. Energy Storage Science and Technology, 2021, 10(5): 1753-1759. |
[11] | Yangyang LIU, Xuyang WANG, Xieyu XU, Yongjing WANG, Shizhao XIONG, Zhongxiao SONG. Research progresses on modified current collector for lithium metal anode [J]. Energy Storage Science and Technology, 2021, 10(4): 1261-1272. |
[12] | Yuting WU, Subudao MING, Cancan ZHANG, Yuanwei LU. Experimental research of the thermophysical properties of ternary mixed carbonate molten salts [J]. Energy Storage Science and Technology, 2021, 10(4): 1292-1296. |
[13] | Yaxuan XIONG, Hui ZHANG, Yuting WU, Yulong DING. Effect of nanoparticles on surface tension and density of binary nitrate [J]. Energy Storage Science and Technology, 2021, 10(4): 1297-1304. |
[14] | Min'an YANG, Ning CHEN, Bo WANG, Qian ZHANG, Jingpei CHEN, Hailei ZHAO, Fushen LI. Gene law about cycle stability of cathode material for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(2): 462-469. |
[15] | Peng SHENG, LI XU, Guangyao ZHAO, Yan HAN, Yuting WU. Preparation and thermophysical properties of novel mixed nitrate molten salts [J]. Energy Storage Science and Technology, 2021, 10(1): 170-176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||