Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (3): 899-912.doi: 10.19799/j.cnki.2095-4239.2022.0694
• Energy Storage System and Engineering • Previous Articles Next Articles
Kuijie LI1(), Ping LOU2, Minyuan GUAN2, Jinlong MO2,3, Weixin ZHANG1, Yuancheng CAO1(), Shijie CHENG1
Received:
2022-11-23
Revised:
2022-12-04
Online:
2023-03-05
Published:
2023-04-14
Contact:
Yuancheng CAO
E-mail:KuijieLi@163.com;yccao@hust.edu.cn
CLC Number:
Kuijie LI, Ping LOU, Minyuan GUAN, Jinlong MO, Weixin ZHANG, Yuancheng CAO, Shijie CHENG. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway[J]. Energy Storage Science and Technology, 2023, 12(3): 899-912.
Fig. 7
Evolution of gas signal during overcharge triggered battery thermal runaway[36](a) Illustration of the experimental environment in a real BESS cabin. Six gas (H2, CO, CO2, HF, HCl, SO2) sensors were set above the battery pack; (b) Voltage profile and surface temperature variation of the LiFePO4 battery pack during overcharging (charge current rate: 0.5 C); (c) Gas concentration variation of six kinds of gas 0—1800 s; (d) Enlarged gas concentration curves 960—1100 s"
Table 1
Gas generation sequence of lithium battery during thermal runaway[47]"
时间 | 现象 |
---|---|
0~362 s | 锂电池正常工作,未探测到信号 |
362~584 s | 探测到信号,气体浓度排序:DMC>CO2>EMC>CH4 |
584~600 s(热失控开始) | 排气率增加,探测到C2H4、CH3OCH3和CH3OCHO |
600~840 s(热失控到达顶峰) | 气体浓度排名:DMC>CO2>EMC> C2H4>CH4>CH3OCH3>CH3OCHO |
840~900 s | 探测到HF |
900~1500 s | DMC、HF和EMC的浓度继续增加但其余气体混合物浓度在降低 |
1500~2500 s | HF的浓度继续增加但其余气体混合物浓度在降低 |
1 | 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的"碳视角": 科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833. |
KANG C Q, DU E S, LI Y W, et al. Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46(3): 821-833. | |
2 | 周芳, 刘思, 侯敏. 锂电池技术在储能领域的应用与发展趋势[J]. 电源技术, 2019, 43(2): 348-350. |
ZHOU F, LIU S, HOU M. Application and development tendency of lithium battery technology in energy storage field[J]. Chinese Journal of Power Sources, 2019, 43(2): 348-350. | |
3 | 缪平, 姚祯, JOHN L, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3): 670-678. |
MIAO P, YAO Z, JOHN L, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3): 670-678. | |
4 | 国家电网公司"电网新技术前景研究"项目咨询组, 王松岑, 来小康, 等. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化, 2013, 37(1): 3-8, 30. |
Consulting Group of State Grid Corporation of China to Prospects of New Technologies in Power Systems, WANG S C, LAI X K, et al. An analysis of prospects for application of large-scale energy storage technology in power systems[J]. Automation of Electric Power Systems, 2013, 37(1): 3-8, 30. | |
5 | 杜炜凝, 周杨, 于晓蒙, 等. 基于锂离子电池储能系统的消防安全技术研究[J]. 供用电, 2020, 37(2): 34-40. |
DU W N, ZHOU Y, YU X M, et al. Research on fire safety technology of energy storage system based on lithium-ion battery[J]. Distribution & Utilization, 2020, 37(2): 34-40. | |
6 | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. |
7 | XU B, LEE J, KWON D, et al. Mitigation strategies for Li-ion battery thermal runaway: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 150: doi: 10.1016/j.rser.2021.111437. |
8 | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016. |
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016. | |
9 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
10 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
11 | HOSSAIN LIPU M S, HANNAN M A, KARIM T F, et al. Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook[J]. Journal of Cleaner Production, 2021, 292: doi: 10.1016/j.jclepro.2021.126044. |
12 | TANG H, WU Y C, CAI Y F, et al. Design of power lithium battery management system based on digital twin[J]. Journal of Energy Storage, 2022, 47: doi: 10.1016/j.est.2021.103679. |
13 | 李煌. 三元锂离子电池热失控传播及阻隔机制研究[D]. 合肥: 中国科学技术大学, 2020. |
LI H. Research on the thermal runaway propagation and its mitigation mechanism of ternary lithium ion battery[D]. Hefei: University of Science and Technology of China, 2020. | |
14 | WANG Y, REN D S, FENG X N, et al. Thermal runaway modeling of large format high-nickel/silicon-graphite lithium-ion batteries based on reaction sequence and kinetics[J]. Applied Energy, 2022, 306: doi 10.1016/j.apenergy.2021.117943. |
15 | 宋来丰, 梅文昕, 贾壮壮, 等. 绝热条件下280 Ah大型磷酸铁锂电池热失控特性分析[J]. 储能科学与技术, 2022, 11(8): 2411-2417. |
SONG L F, MEI W X, JIA Z Z, et al. Analysis of thermal runaway characteristics of 280 Ah large LiFePO4 battery under adiabatic conditions[J]. Energy Storage Science and Technology, 2022, 11(8): 2411-2417. | |
16 | 刘洋, 陶风波, 孙磊, 等. 磷酸铁锂储能电池热失控及其内部演变机制研究[J]. 高电压技术, 2021, 47(4): 1333-1343. |
LIU Y, TAO F B, SUN L, et al. Research of thermal runaway and internal evolution mechanism of lithium iron phosphate energy storage battery[J]. High Voltage Engineering, 2021, 47(4): 1333-1343. | |
17 | 朱鸿章, 吴传平, 周天念, 等. 磷酸铁锂和三元锂电池外部过热条件下的热失控特性[J]. 储能科学与技术, 2022, 11(1): 201-210. |
ZHU H Z, WU C P, ZHOU T N, et al. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating[J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. | |
18 | 尹涛, 贾隆舟, 常修亮, 等. 软包磷酸铁锂电池高电压浮充后热安全研究[J]. 储能科学与技术, 2022, 11(8): 2546-2555. |
YIN T, JIA L Z, CHANG X L, et al. Research on thermal safety of soft-pack LiFePO4 battery after high-voltage float charge[J]. Energy Storage Science and Technology, 2022, 11(8): 2546-2555. | |
19 | 黄德扬, 陈自强, 郑昌文. 时变温度环境下锂离子电池自适应SOC估计方法[J]. 装备环境工程, 2018, 15(12): 28-34. |
HUANG D Y, CHEN Z Q, ZHENG C W. SOC adaptive estimation method for Li-ion battery applied in temperature-varying condition[J]. Equipment Environmental Engineering, 2018, 15(12): 28-34. | |
20 | 张明轩, 冯旭宁, 欧阳明高, 等. 三元锂离子动力电池针刺热失控实验与建模[J]. 汽车工程, 2015, 37(7): 743-750, 756. |
ZHANG M X, FENG X N, OUYANG M G, et al. Experiments and modeling of nail penetration thermal runaway in a NCM Li-ion power battery[J]. Automotive Engineering, 2015, 37(7): 743-750, 756. | |
21 | E J, ZHANG B, ZENG Y, et al. Effects analysis on active equalization control of lithium-ion batteries based on intelligent estimation of the state-of-charge[J]. Energy, 2022, 238: doi: 10.1016/j.energy.2021.121822. |
22 | WANG Z R, HE T F, BIAN H, et al. Characteristics of and factors influencing thermal runaway propagation in lithium-ion battery packs[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est.2021.102956. |
23 | FANG J, CAI J N, HE X Z. Experimental study on the vertical thermal runaway propagation in cylindrical lithium-ion batteries: Effects of spacing and state of charge[J]. Applied Thermal Engineering, 2021, 197: doi: 10.1016/j.applthermaleng.2021.117399. |
24 | HUANG L W, ZHANG Z S, WANG Z P, et al. Thermal runaway behavior during overcharge for large-format lithium-ion batteries with different packaging patterns[J]. Journal of Energy Storage, 2019, 25: doi: 10.1016/j.est.2019.100811. |
25 | HUANG Z H, ZHAO C P, LI H, et al. Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes[J]. Energy, 2020, 205: doi: 10.1016/j.energy.2020.117906. |
26 | 陈欣蕊, 谭立志, 赵彦民, 等. 磷酸铁锂电池循环老化后不同SOC状态热特性研究[J]. 电源技术, 2021, 45(7): 877-880. |
CHEN X R, TAN L Z, ZHAO Y M, et al. Thermal characteristics of lithium-iron phosphate batteries under different SOCs after cycles[J]. Chinese Journal of Power Sources, 2021, 45(7): 877-880. | |
27 | KOCH S, FILL A, KELESIADOU K, et al. Discharge by short circuit currents of parallel-connected lithium-ion cells in thermal propagation[J]. Batteries, 2019, 5(1): doi: 10.3390/batteries5010018. |
28 | HUANG Z H, LIU J L, ZHAI H J, et al. Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions[J]. Energy, 2021, 233: doi: 10.1016/j.energy.2021.121103. |
29 | 黎瑞和. 锂离子电池全生命周期形变的机理、影响及应用[D]. 北京: 清华大学, 2020. |
LI R H. Deformation of lithium ion battery during the whole life cycle: Mechanism, effects and application[D]. Beijing: Tsinghua University, 2020. | |
30 | PANNALA S, ZHANG M X, SIEGEL J B, et al. Mechanical measurements for early detection of thermal runaway induced by an internal short circuit[J]. ECS Meeting Abstracts, 2018, (3): 368. |
31 | 刘伯峥, 曹六阳, 曾涛, 等. 束缚力对磷酸铁锂电池安全性影响[J]. 储能科学与技术, 2022, 11(8): 2556-2563. |
LIU B Z, CAO L Y, ZENG T, et al. Effect of the binding force on the safety of LiFePO4 cells[J]. Energy Storage Science and Technology, 2022, 11(8): 2556-2563. | |
32 | ZHANG C, SANTHANAGOPALAN S, SPRAGUE M A, et al. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse[J]. Journal of Power Sources, 2015, 290: 102-113. |
33 | BAI J L, WANG Z R, GAO T F, et al. Effect of mechanical extrusion force on thermal runaway of lithium-ion batteries caused by flat heating[J]. Journal of Power Sources, 2021, 507: doi: 10.1016/j.jpowsour.2021.230305. |
34 | 刘冰河. 锂离子电池机械完整性多场耦合机理研究[D]. 北京航空航天大学, 2019. |
LIU B H. Study of multi-physics mechanism of mechanical integrity for lithium ion battery[D]. Beijing: Beihang University, 2019. | |
35 | 石爽, 吕娜伟, 马敬轩, 等. 不同类型气体探测对磷酸铁锂电池储能舱过充安全预警有效性对比[J]. 储能科学与技术, 2022, 11(8): 2452-2462. |
SHI S, LYU N W, MA J X, et al. Comparative study on the effectiveness of different types of gas detection on the overcharge safety early warning of a lithium iron phosphate battery energy storage compartment[J]. Energy Storage Science and Technology, 2022, 11(8): 2452-2462. | |
36 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. |
37 | FINEGAN D P, SCHEEL M, ROBINSON J B, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 2015, 6: doi: 10.1038/ncomms7924. |
38 | GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7): 3633-3642. |
39 | OSTANEK J K, LI W S, MUKHERJEE P P, et al. Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model[J]. Applied Energy, 2020, 268: doi: 10.1016/j.apenergy.2020.114972. |
40 | JINYONG K, ANUDEEP M, FINEGAN DONAL P, et al. Modeling cell venting and gas-phase reactions in 18650 lithium ion batteries during thermal runaway[J]. Journal of Power Sources, 2021, 489: doi: 10.1016/j.jpowsour.2021.229496. |
41 | FERNANDES Y, BRY A, DE PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery[J]. Journal of Power Sources, 2018, 389: 106-119. |
42 | ZHANG Y J, WANG H W, LI W F, et al. Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries[J]. eTransportation, 2019, 2: doi: 10.1016/j.etran.2019.100031. |
43 | 姜久春, 高洋, 张彩萍, 等. 电动汽车锂离子动力电池健康状态在线诊断方法[J]. 机械工程学报, 2019, 55(20): 60-72, 84. |
JIANG J C, GAO Y, ZHANG C P, et al. Online diagnostic method for health status of lithium-ion battery in electric vehicle[J]. Journal of Mechanical Engineering, 2019, 55(20): 60-72, 84. | |
44 | 于子轩, 孟国栋, 谢小军, 等. 磷酸铁锂储能电池过充热失控仿真研究[J]. 电气工程学报, 2022, 17(3): 30-39. |
YU Z X, MENG G D, XIE X J, et al. Simulation research on overcharge thermal runaway of lithium iron phosphate energy storage battery[J]. Journal of Electrical Engineering, 2022, 17(3): 30-39. | |
45 | WANG H, LARA-CURZIO E, RULE E T, et al. Mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries[J]. Journal of Power Sources, 2017, 342: 913-920. |
46 | WANG Y, FENG X N, PENG Y, et al. Reductive gas manipulation at early self-heating stage enables controllable battery thermal failure[J]. Joule, 2022, 6(12): 2810-2820. |
47 | ARAI H, TSUDA M, SAITO K, et al. Thermal reactions between delithiated lithium nickelate and electrolyte solutions[J]. Journal of the Electrochemical Society, 2002, 149(4): doi: 10.1149/1.1452114. |
48 | 黄峥, 秦鹏, 石晗, 等. 过热条件下86 Ah磷酸铁锂电池热失控行为研究[J]. 高电压技术, 2022, 48(3): 1185-1191. |
HUANG Z, QIN P, SHI H, et al. Study on thermal runaway behavior of 86 Ah lithium iron phosphate battery under overheat condition[J]. High Voltage Engineering, 2022, 48(3): 1185-1191. | |
49 | ABD-EL-LATIF A A, SICHLER P, KASPER M, et al. Insights into thermal runaway of Li-ion cells by accelerating rate calorimetry coupled with external sensors and online gas analysis[J]. Batteries & Supercaps, 2021, 4(7): 1135-1144. |
50 | KRISTON A, ADANOUJ I, RUIZ V, et al. Quantification and simulation of thermal decomposition reactions of Li-ion battery materials by simultaneous thermal analysis coupled with gas analysis[J]. Journal of Power Sources, 2019, 435: doi: 10.1016/j.jpowsour.2019.226774. |
51 | 尹康涌, 陶风波, 梁伟, 等. 双层结构预制舱式磷酸铁锂储能电站热失控气体爆炸模拟[J]. 储能科学与技术, 2022, 11(8): 2488-2496. |
YIN K Y, TAO F B, LIANG W, et al. Simulation of thermal runaway gas explosion in double-layer prefabricated cabin lithium iron phosphate energy storage power station[J]. Energy Storage Science and Technology, 2022, 11(8): 2488-2496. | |
52 | 辛耀达, 李娜, 杨乐, 等. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
XIN Y D, LI N, YANG L, et al. Integrated sensing technology for lithium ion battery[J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. | |
53 | QIN P, SUN J H, WANG Q S. A new method to explore thermal and venting behavior of lithium-ion battery thermal runaway[J]. Journal of Power Sources, 2021, 486: doi: 10.1016/j.jpowsour.2020.229357. |
54 | CAI T, STEFANOPOULOU A G, SIEGEL J B. Modeling Li-ion battery temperature and expansion force during the early stages of thermal runaway triggered by internal shorts[J]. Journal of the Electrochemical Society, 2019, 166(12): doi: 10.1149/2.1561910jes. |
55 | CAI T, MOHTAT P, STEFANOPOULOU A G, et al. Li-ion battery fault detection in large packs using force and gas sensors[J]. IFAC-PapersOnLine, 2020, 53(2): 12491-12496. |
56 | KOCH S, BIRKE K, KUHN R. Fast thermal runaway detection for lithium-ion cells in large scale traction batteries[J]. Batteries, 2018, 4(2): doi: 10.3390/batteries4020016. |
[1] | Yiming YAO, Weiling LUAN, Ying CHEN, Min SUN. Recent progress in aging degradation of lithium-ion battery materials via in-situ optical microscopy [J]. Energy Storage Science and Technology, 2023, 12(3): 777-791. |
[2] | Zhifu WANG, Wei LUO, Yuan YAN, Song XU, Wenmei HAO, Conglin ZHOU. Fault diagnosis of lithium-ion battery sensors using GAPSO-FNN [J]. Energy Storage Science and Technology, 2023, 12(2): 602-608. |
[3] | Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating [J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. |
[4] | Fan YANG, Jiarui HE, Ming LU, Lingxia LU, Miao YU. SOC estimation of lithium-ion batteries based on BP-UKF algorithm [J]. Energy Storage Science and Technology, 2023, 12(2): 552-559. |
[5] | Wenkai ZHU, Xing ZHOU, Yajie LIU, Tao ZHANG, Yuanming SONG. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network [J]. Energy Storage Science and Technology, 2023, 12(2): 570-578. |
[6] | Yue PAN, Xuebing HAN, Minggao OUYANG, Huahua REN, Wei LIU, Yuejun YAN. Research on the detection algorithm for internal short circuits in lithium-ion batteries and its application to real operating data [J]. Energy Storage Science and Technology, 2023, 12(1): 198-208. |
[7] | Xiaolong HE, Xiaolong SHI, Ziyang WANG, Luhao HAN, Bin YAO. Experimental study on thermal runaway characteristics of vehicle NCM lithium-ion batteries under overcharge, overheating, and their combined effects [J]. Energy Storage Science and Technology, 2023, 12(1): 218-226. |
[8] | Linwang DENG, Tianyu FENG, Shiwei SHU, Bin GUO, Zifeng ZHANG. Nondestructive lithium plating online detection for lithium-ion batteries: A review [J]. Energy Storage Science and Technology, 2023, 12(1): 263-277. |
[9] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[10] | Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. |
[11] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[12] | Lei XU, Xiaopeng LIU, Yongyu WANG. Early warning analysis of the thermal runaway process of full-size prefabricated cabin storage tank [J]. Energy Storage Science and Technology, 2022, 11(8): 2463-2470. |
[13] | Shuang SHI, Nawei LYU, Jingxuan MA, Kangyong YIN, Lei SUN, Ning ZHANG, Yang JIN. Comparative study on the effectiveness of different types of gas detection on the overcharge safety early warning of a lithium iron phosphate battery energy storage compartment [J]. Energy Storage Science and Technology, 2022, 11(8): 2452-2462. |
[14] | Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model [J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. |
[15] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||