Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (4): 1110-1130.doi: 10.19799/j.cnki.2095-4239.2022.0696
• Energy Storage Materials and Devices • Previous Articles Next Articles
Qi ZHANG(), Chongyang LIU, Jun SONG, Xueling ZHANG, Yinlei LI, Yanfang LI
Received:
2022-11-25
Revised:
2023-01-26
Online:
2023-04-05
Published:
2023-05-08
Contact:
Qi ZHANG
E-mail:1990922zhangqi@zzuli.edu.cn
CLC Number:
Qi ZHANG, Chongyang LIU, Jun SONG, Xueling ZHANG, Yinlei LI, Yanfang LI. Progress in synthesis and application of microcapsule phase-change materials[J]. Energy Storage Science and Technology, 2023, 12(4): 1110-1130.
Table 3
The application conditions and advantages and disadvantages of different preparation methods of phase change microcapsules"
类别 | 制备方法 | 适用条件 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|
物理法 | 电流体动力喷雾技术 | 适合制备液体为芯材的相变微胶囊 | 大规模生产,具有良好的控制尺寸 | 包封率不高 | [ |
喷雾干燥法 | 适合制备芯材为石蜡的相变微胶囊 | 操作简单、适合工业生产、生产率高 | 投资费用高、包封率低 | [ | |
化学法 | 乳液聚合法 | 适合制备芯材为不溶于水相的单体,常用以制备纳米相变胶囊 | 聚合速率高,制备的相变微胶囊尺寸较小,生产品质高 | 过程难以控制,从表面活性剂中纯化聚合物,产品的杂质残留较高 | [ |
细乳液聚合法 | 适用于制备烷烃为芯材的纳米相变胶囊 | 能量输入少,稳定性高 | 不可使用挥发性溶剂 | [ | |
界面聚合法 | 适用于制备水溶性芯材和油溶性芯材的相变微胶囊 | 高封装率,良好的耐机械性能,制备工艺简单 | 热性能较低,可靠性差,制备的相变微胶囊尺寸多为微米级 | [ | |
原位聚合法 | 常制备油性芯材的相变微胶囊 | 制备成本低,良好的化学和热稳定性 | 可溶性单体是必需的,而聚合物是不可溶的,常用有毒壳材 | [ | |
物理化学法 | 凝聚法 | 适合制备芯材为脂类或石蜡的相变微胶囊 | 具有两种方法 | 容易凝聚成块 | [ |
溶胶-凝胶法 | 常制备烷烃和无机化合物为芯材,二氧化硅为壳的相变微胶囊 | 各种外壳材料的导热性高 | 制备过程相对复杂 | [ |
Fig. 13
(a) Specific heat capacity of phase change microcapsule heat storage slurry doped with and undoped photosensitive dyes; (b) photothermal temperature rise curve of phase change microcapsule heat storage slurry; (c) photothermal conversion efficiency of phase change microcapsule heat storage slurry[120]"
1 | 中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[N]. 人民日报, 2021-10-25. |
2 | WANG F X, LIN W Z, LING Z Y, et al. A comprehensive review on phase change material emulsions: Fabrication, characteristics, and heat transfer performance[J]. Solar Energy Materials and Solar Cells, 2019, 191: 218-234. |
3 | DU P X, LIU C H, FANG B, et al. Experimental investigation on the stability and heat transfer enhancement of modified mircoencapsulated phase change materials and latent functionally thermal fluids[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016 /j.est.2021.102846. |
4 | ZHAI D X, HE Y Y, ZHANG X X, et al. Preparation, morphology, and thermal performance of microencapsulated phase change materials with a MF/SiO2 composite shell[J]. Energy & Fuels, 2020, 34(12): 16819-16830. |
5 | ZHU S L, NGUYEN M T, YONEZAWA T. Micro- and nano-encapsulated metal and alloy-based phase-change materials for thermal energy storage[J]. Nanoscale Advances, 2021, 3(16): 4626-4645. |
6 | LIU H, WANG X D, WU D Z, et al. Fabrication and applications of dual-responsive microencapsulated phase change material with enhanced solar energy-storage and solar photocatalytic effectiveness[J]. Solar Energy Materials and Solar Cells, 2019, 193: 184-197. |
7 | JI J, LIANG L, XU H, et al. Facile solvent evaporation synthesis of core-shell structured Al@PVDF nanoparticles with excellent corrosion resistance and combustion properties[J]. Combustion and Flame, 2022, 238: doi: 10.1016/j.combustflame.2021.111925. |
8 | KONUKLU Y, AKAR H B. Promising palmitic acid/poly(allyl methacrylate) microcapsules for thermal management applications[J]. Energy, 2023, 262: doi: 10.1016/j.energy.2022.125491. |
9 | JIANG R J, XU L L, WU N. Preparation and characterization of acrylic resin encapsulated n-dodecanol microcapsule phase change material[J]. Materials Research Express, 2020, 7(9): doi: 10.1088/2053-1591/abb2cc. |
10 | MO B Z, MO S P, JIA L S, et al. Microencapsulation of ethanol-soluble inorganic salts for high temperature thermal energy storage[J]. Materials Chemistry and Physics, 2022, 275: doi: 10.1016/j.matchemphys.2021.125261. |
11 | HUO X N, LI W, WANG Y, et al. Chitosan composite microencapsulated comb-like polymeric phase change material via coacervation microencapsulation[J]. Carbohydrate Polymers, 2018, 200: 602-610. |
12 | SIERRA V, CHEJNE F. Energy saving evaluation of microencapsulated phase change materials embedded in building systems[J]. Journal of Energy Storage, 2022, 49: doi: 10.1016/j.est.2022.104102. |
13 | IQBAL K, KHAN A, SUN D M, et al. Phase change materials, their synthesis and application in textiles—A review[J]. The Journal of the Textile Institute, 2019, 110(4): 625-638. |
14 | ZHENG H F, TIAN G J, YANG C W, et al. Experimental study on performance of phase change microcapsule cold storage solar composite refrigeration system[J]. Renewable Energy, 2022, 198: 1176-1185. |
15 | YUAN H M, BAI H, ZHANG X, et al. Synthesis and characterization of stearic acid/silicon dioxide nanoencapsules for solar energy storage[J]. Solar Energy, 2018, 173: 42-52. |
16 | ZHAO Q H, YANG W B, LI Y S, et al. Multifunctional phase change microcapsules based on graphene oxide Pickering emulsion for photothermal energy conversion and superhydrophobicity[J]. International Journal of Energy Research, 2020, 44(6): 4464-4474. |
17 | YUAN H M, BAI H, LU X, et al. Size controlled lauric acid/silicon dioxide nanocapsules for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 191: 243-257. |
18 | XU B, ZHOU J, NI Z J, et al. Synthesis of novel microencapsulated phase change materials with copper and copper oxide for solar energy storage and photo-thermal conversion[J]. Solar Energy Materials and Solar Cells, 2018, 179: 87-94. |
19 | LI M, LIU J P, SHI J B. Synthesis and properties of phase change microcapsule with SiO2-TiO2 hybrid shell[J]. Solar Energy, 2018, 167: 158-164. |
20 | ZOU L, LI S, LI L, et al. Synthesis of TiO2 shell microcapsule-based phase change film with thermal energy storage and buffering capabilities[J]. Materials Today Sustainability, 2022, 18: doi: 10.1016/j.mtsust.2022.100119. |
21 | ZHAO A Q, AN J L, YANG J L, et al. Microencapsulated phase change materials with composite titania-polyurea (TiO2-PUA) shell[J]. Applied Energy, 2018, 215: 468-478. |
22 | ZHU Y L, QIN Y S, WEI C S, et al. Nanoencapsulated phase change materials with polymer-SiO2 hybrid shell materials: Compositions, morphologies, and properties[J]. Energy Conversion and Management, 2018, 164: 83-92. |
23 | QIN S Y, LI H B, HU C Z. Thermal properties and morphology of chitosan/gelatin composite shell microcapsule via multi-emulsion[J]. Materials Letters, 2021, 291: doi: 10.1016/j.matlet.2021.129475. |
24 | KARAIPEKLI A, ERDOĞAN T, BARLAK S. The stability and thermophysical properties of a thermal fluid containing surface-functionalized nanoencapsulated PCM[J]. Thermochimica Acta, 2019, 682: doi: 10.1016/j.tca.2019.178406. |
25 | SANGJUN P, CHAIYASAT A. Poly(L-lactic acid)-based microcapsule containing phase-change material: Influence of polymer shell on particle morphology[J]. Fibers and Polymers, 2020, 21(5): 935-943. |
26 | BAKESHLOU Z, NIKFARJAM N. Thermoregulating papers containing fabricated microencapsulated phase change materials through Pickering emulsion templating[J]. Industrial & Engineering Chemistry Research, 2020, 59(46): 20253-20268. |
27 | SUN K, LIU H, WANG X D, et al. Innovative design of superhydrophobic thermal energy-storage materials by microencapsulation of n-docosane with nanostructured ZnO/SiO2 shell[J]. Applied Energy, 2019, 237: 549-565. |
28 | FREDI G, DIRÈ S, CALLONE E, et al. Docosane-organosilica microcapsules for structural composites with thermal energy storage/release capability[J]. Materials (Basel, Switzerland), 2019, 12(8): doi: 10.3390/ma12081286. |
29 | WANG J H, ZHAI X Y, ZHONG Z R, et al. Nanoencapsulated n-tetradecane phase change materials with melamine-urea-formaldehyde-TiO2 hybrid shell for cold energy storage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: doi: 10.1016/j.colsurfa.2021.128162. |
30 | YU A Q, SONG X Y, LU W, et al. Facile and safety synthesis of highly loaded phase change microcapsules with paraffin/butyl stearate core and their feasible application in polymer composite[J]. Solar Energy Materials and Solar Cells, 2022, 247: doi: 10.1016/j.solmat.2022.111955. |
31 | KAHRAMAN DÖĞÜŞCÜ D, KıZıL Ç, BIÇER A, et al. Microencapsulated n-alkane eutectics in polystyrene for solar thermal applications[J]. Solar Energy, 2018, 160: 32-42. |
32 | MERT M S, MERT H H, SERT M. Microencapsulated oleic-capric acid/hexadecane mixture as phase change material for thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(4): 1551-1561. |
33 | 王俊霞, 王军, 黄崇杏, 等. 多壁碳纳米管/硬脂酸-十八醇@脲醛树脂微胶囊的制备及表征[J]. 复合材料学报, 2019, 36(3): 730-738. |
WANG J X, WANG J, HUANG C X, et al. Preparation and characterization of MWCNTs/stearic acid-octadecyl alcohol@urea formaldehyde resin phase change microencapsules[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 730-738. | |
34 | ÁLVAREZ-BERMÚDEZ O, ADAM-CERVERA I, AGUADO-HERNÁNDIZ A, et al. Magnetic polyurethane microcarriers from nanoparticle-stabilized emulsions for thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(49): 17956-17966. |
35 | WANG K C, ZHANG T Y, WANG T Y, et al. Microencapsulation of high temperature metallic phase change materials with SiCN shell[J]. Chemical Engineering Journal, 2022, 436: doi: 10.1016/j.cej.2022.135054. |
36 | 刘志芳. 高储能密度的导热增强型相变储热微胶囊的制备及热特性研究[D]. 广州: 华南理工大学, 2019. |
LIU Z F. Preparation and thermal properties of microencapsulated phase change materials with high heat storage density and enhanced thermal conductivity[D]. Guangzhou: South China University of Technology, 2019. | |
37 | 张青文. 碳酸钙包覆正十九烷相变微胶囊及其热物性研究[D]. 徐州: 中国矿业大学, 2019. |
ZHANG Q W. Study on N-nonadecane/CaCO3 microencapsulated phase change material and its thermal properties[D]. Xuzhou: China University of Mining and Technology, 2019. | |
38 | SAMI S, SADRAMELI S M, ETESAMI N. Thermal properties optimization of microencapsulated a renewable and non-toxic phase change material with a polystyrene shell for thermal energy storage systems[J]. Applied Thermal Engineering, 2018, 130: 1416-1424. |
39 | LI J, LI L J, WANG H C, et al. Microencapsulation of molten salt in titanium shell for high-temperature latent functional thermal fluid[J]. Energy Technology, 2020, 8(12): doi: 10.1002/ente.202000550. |
40 | JIANG Z N, SHU J J, GE Z Q, et al. Preparation and performance of magnetic phase change microcapsules with organic-inorganic double shell[J]. Solar Energy Materials and Solar Cells, 2022, 240: doi: 10.1016/j.solmat.2022.111716. |
41 | ZHANG Y, LI X Y, LI J Q, et al. Solar-driven phase change microencapsulation with efficient Ti4O7 nanoconverter for latent heat storage[J]. Nano Energy, 2018, 53: 579-586. |
42 | GAO Y, GENG X Y, WANG X J, et al. Synthesis and characterization of microencapsulated phase change materials with chitosan-based polyurethane shell[J]. Carbohydrate Polymers, 2021, 273: doi: 10.1016/j.carbpol.2021.118629. |
43 | LV Z H, TANG J W, TIAN Y T, et al. Preparation and characterization of Paraffin@ZnO microcapsule phase-change material by an in situ precipitation method[J]. Energy & Fuels, 2021, 35(21): 17940-17947. |
44 | CHEN Y B, CUI S Q, JIN H, et al. Fabrication of phase change microcapsules with controllable size via regenerated nanochitin stabilized Pickering and their applications for lyocell fiber[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655: doi: 10.1016/j.colsurfa.2022.130308. |
45 | MA X C, LIU Y J, LIU H, et al. Fabrication of novel slurry containing graphene oxide-modified microencapsulated phase change material for direct absorption solar collector[J]. Solar Energy Materials and Solar Cells, 2018, 188: 73-80. |
46 | WANG R, KANG Y J, LEI T X, et al. Microcapsules composed of stearic acid core and polyethylene glycol-based shell as a microcapsule phase change material[J]. International Journal of Energy Research, 2021, 45(6): 9677-9684. |
47 | KE W D, WU X W, ZHANG J L. In situ polymerization of organic and inorganic phase change microcapsule and enhancement of infrared stealth via nano iron[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627: doi: 10.1016/j.colsurfa.2021.127124. |
48 | LIU H, WANG X D, WU D Z. Tailoring of bifunctional microencapsulated phase change materials with CdS/SiO2 double-layered shell for solar photocatalysis and solar thermal energy storage[J]. Applied Thermal Engineering, 2018, 134: 603-614. |
49 | 曹金安, 王景平, 徐友龙, 等. 天然可生物降解聚合物壁材在微胶囊中的应用[J/OL]. 材料导报, 2023(18): 1-36. [2023-01-01]. http://kns.cnki.net/kcms/detail/50.1078.TB.20220811.1503.014.html. |
CAO J A, WANG J P, XU Y L, et al. Application of natural biodegradable polymer wall materials in microcapsules[J/OL]. Materials Reports, 2023(18): 1-36. [2023-01-01]. http://kns.cnki.net/kcms/detail/50.1078.TB.20220811.1503.014.html. | |
50 | WANG X G, CHEN Z F, XU W, et al. Capric acid phase change microcapsules modified with graphene oxide for energy storage[J]. Journal of Materials Science, 2019, 54(24): 14834-14844. |
51 | LI S L, DONG B B, WANG J H, et al. Synthesis and characterization of mixed alkanes microcapsules with phase change temperature below ice point for cryogenic thermal energy storage[J]. Energy, 2019, 187: doi: 10.1016/j.energy.2019.115898. |
52 | CHEN Y B, YANG G W, CHEN L Y, et al. Phase change microcapsules with graphene nanoplates embedded polyurea shell for enhanced thermal conductivity[J]. Materials Letters, 2023, 330: doi: 10.1016/j.matlet.2022.133223. |
53 | ZHANG B Y, ZHANG Z, KAPAR S, et al. Microencapsulation of phase change materials with polystyrene/cellulose nanocrystal hybrid shell via Pickering emulsion polymerization[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(21): 17756-17767. |
54 | 李东昇, 刘雷艮, 吴建兵, 等. 十八烷基聚甲基丙烯酸甲酯相变微胶囊的制备及其表征[J]. 毛纺科技, 2022, 50(10): 64-71. |
LI D S, LIU L G, WU J B, et al. Preparation and characterization of octadecyl PMMA phase change microcapsules[J]. Wool Textile Journal, 2022, 50(10): 64-71. | |
55 | PENG G J, DOU G J, HU Y H, et al. Phase change material (PCM) microcapsules for thermal energy storage[J]. Advances in Polymer Technology, 2020, 2020: 1-20. |
56 | BAO J M, ZOU D Q, ZHU S X, et al. A medium-temperature, metal-based, microencapsulated phase change material with a void for thermal expansion[J]. Chemical Engineering Journal, 2021, 415: doi: 10.1016/j.cej.2021.128965. |
57 | ZHU S X, ZOU D Q, BAO J M, et al. Synthesis and characterization of a novel high durability alloy microcapsule for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 230: doi: 10.1016/j.solmat.2021.111262. |
58 | LI F R, SUN Z C, JIAO S Z, et al. Preparation and performance of dual-functional magnetic phase-change microcapsules[J]. Chemistry, an Asian Journal, 2021, 16(1): 102-109. |
59 | ZHAO Q H, HE F F, ZHANG Q P, et al. Microencapsulated phase change materials based on graphene Pickering emulsion for light-to-thermal energy conversion and management[J]. Solar Energy Materials and Solar Cells, 2019, 203: doi: 10.1016/j.solmat. 2019.110204. |
60 | LAN W, SHANG B F, WU R K, et al. Thermally-enhanced nanoencapsulated phase change materials for latent functionally thermal fluid[J]. International Journal of Thermal Sciences, 2021, 159: doi: 10.1016/j.ijthermalsci.2020.106619. |
61 | LI X, WANG Y B, WANG B J, et al. Antibacterial phase change microcapsules obtained with lignin as the Pickering stabilizer and the reducing agent for silver[J]. International Journal of Biological Macromolecules, 2020, 144: 624-631. |
62 | LIU L, NIU J L, WU J Y. Preparation of stable phase change material emulsions for thermal energy storage and thermal management applications: A review[J]. Materials (Basel, Switzerland), 2021, 15(1): doi: 10.3390/ma15010121. |
63 | CABALEIRO D, AGRESTI F, FEDELE L, et al. Review on phase change material emulsions for advanced thermal management: Design, characterization and thermal performance[J]. Renewable and Sustainable Energy Reviews, 2022, 159: doi: 10.1016/j.rser.2022.112238. |
64 | FANG Y T, LIU X, LIANG X H, et al. Ultrasonic synthesis and characterization of polystyrene/n-dotriacontane composite nanoencapsulated phase change material for thermal energy storage[J]. Applied Energy, 2014, 132: 551-556. |
65 | ROSTAMI M, YOUSEFI M, KHEZERLOU A, et al. Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes[J]. Food Hydrocolloids, 2019, 97: doi: 10.1016/j.foodhyd.2019.06.015. |
66 | 高立营, 郅慧, 张远军, 等. 相变材料微胶囊的制备与表征分析方法综述[J]. 南京工业大学学报(自然科学版), 2022, 44(6): 624-632. |
GAO L Y, ZHI H, ZHANG Y J, et al. Review of the preparation and characterization of microencapsulated phase change materials[J]. Journal of Nanjing Tech University (Natural Science Edition), 2022, 44(6): 624-632. | |
67 | GIRO-PALOMA J, KONUKLU Y, FERNÁNDEZ A I. Preparation and exhaustive characterization of paraffin or palmitic acid microcapsules as novel phase change material[J]. Solar Energy, 2015, 112: 300-309. |
68 | ŞAHAN N, NIGON D, MANTELL S C, et al. Encapsulation of stearic acid with different PMMA-hybrid shell materials for thermotropic materials[J]. Solar Energy, 2019, 184: 466-476. |
69 | LIANG S E, LI Q B, ZHU Y L, et al. Nanoencapsulation of n-octadecane phase change material with silica shell through interfacial hydrolysis and polycondensation in miniemulsion[J]. Energy, 2015, 93: 1684-1692. |
70 | FONSECA G E, MCKENNA T F, DUBÉ M A. Miniemulsion vs. conventional emulsion polymerization for pressure-sensitive adhesives production[J]. Chemical Engineering Science, 2010, 65(9): 2797-2810. |
71 | 刘炎昌, 娄鸿飞, 刘东志, 等. 界面聚合法制备十二醇相变微胶囊的工艺及性能[J]. 材料导报, 2021, 35(2): 2157-2160. |
LIU Y C, LOU H F, LIU D Z, et al. Preparation and properties of dodecanol microcapsules by interfacial polymerization[J]. Materials Reports, 2021, 35(2): 2157-2160. | |
72 | ZHANG H, SHI Y T, SHENTU B Q, et al. Synthesis and thermal performance of polyurea microcapsulated phase change materials by interfacial polymerization[J]. Polymer Science, Series B, 2017, 59(6): 689-696. |
73 | LI B X, LIU T X, HU L Y, et al. Fabrication and properties of microencapsulated Paraffin@SiO2 phase change composite for thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(3): 374-380. |
74 | 毛冬宇, 刘红茹, 王晓春, 等. 原位聚合法热致变色微胶囊的制备及性能研究[J]. 化工新型材料, 2021, 49(4): 108-111. |
MAO D Y, LIU H R, WANG X C, et al. Preparation and property of thermochromic microcapsule by in situ polymerization[J]. New Chemical Materials, 2021, 49(4): 108-111. | |
75 | 宋云飞, 娄鸿飞, 吕绪良, 等. 原位聚合法制备微胶囊的研究进展[J]. 化工新型材料, 2018, 46(9): 30-33, 40. |
SONG Y F, LOU H F, LV X L, et al. Advances in preparation of microcapsule by in situ polymerization[J]. New Chemical Materials, 2018, 46(9): 30-33, 40. | |
76 | PETHURAJAN V, SIVAN S. Fabrication, characterisation and heat transfer study on microencapsulation of nano-enhanced phase change material[J]. Chemical Engineering and Processing - Process Intensification, 2018, 133: 12-23. |
77 | ONDER E, SARIER N, CIMEN E H. Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics[J]. Thermochimica Acta, 2008, 467(1/2): 63-72. |
78 | HUANG X, ZHU C Q, LIN Y X, et al. Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review[J]. Applied Thermal Engineering, 2019, 147: 841-855. |
79 | QIAN T M, DANG B K, CHEN Y P, et al. Fabrication of magnetic phase change n-eicosane @ Fe3O4/SiO2 microcapsules on wood surface via Sol-gel method[J]. Journal of Alloys and Compounds, 2019, 772: 871-876. |
80 | SU W G, DARKWA J, KOKOGIANNAKIS G. Review of solid-liquid phase change materials and their encapsulation technologies[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 373-391. |
81 | TAHAN LATIBARI S, MEHRALI M, MEHRALI M, et al. Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via Sol-gel method[J]. Energy, 2013, 61: 664-672. |
82 | CHEN Z, CAO L, FANG G Y, et al. Synthesis and characterization of microencapsulated paraffin microcapsules as shape-stabilized thermal energy storage materials[J]. Nanoscale and Microscale Thermophysical Engineering, 2013, 17(2): 112-123. |
83 | ALEHOSSEINI A, SARABI-JAMAB M, GHORANI B, et al. Electro-encapsulation of Lactobacillus casei in high-resistant capsules of whey protein containing transglutaminase enzyme[J]. LWT, 2019, 102: 150-158. |
84 | ALEHOSSEINI E, JAFARI S M. Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry[J]. Trends in Food Science & Technology, 2019, 91: 116-128. |
85 | MOGHADDAM M K, MORTAZAVI S M, KHAYAMIAN T. Preparation of calcium alginate microcapsules containing n-nonadecane by a melt coaxial electrospray method[J]. Journal of Electrostatics, 2015, 73: 56-64. |
86 | YUAN W J, WANG Y P, LI W, et al. Microencapsulation and characterization of polyamic acid microcapsules containing n-octadecane via electrospraying method[J]. Materials Express, 2015, 5(6): 480-488. |
87 | FARIDI ESFANJANI A, JAFARI S M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds[J]. Colloids and Surfaces B: Biointerfaces, 2016, 146: 532-543. |
88 | 公雪, 王程遥, 朱群志. 微胶囊相变材料制备与应用研究进展[J]. 化工进展, 2021, 40(10): 5554-5576. |
GONG X, WANG C Y, ZHU Q Z. Research progress on preparation and application of microcapsule phase change materials[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5554-5576. | |
89 | 陈新祥. 聚氨酯—植物蜡复合相变材料的制备及其在纺织品中的应用研究[D]. 杭州: 浙江理工大学, 2020. |
CHEN X X. Preparation of polyurethane-plant wax composite phase change materials and its application on txtiles[D]. Hangzhou: Zhejiang Sci-Tech University, 2020. | |
90 | HAWLADER M N A, UDDIN M S, KHIN M M. Microencapsulated PCM thermal-energy storage system[J]. Applied Energy, 2003, 74(1/2): 195-202. |
91 | 袁换美. 复合相变储热纳米胶囊的形成机制及性能优化基础研究[D]. 北京: 北京科技大学, 2020. |
YUAN H M. Study on the formation mechanism and performance optimization of the composite phase change nanocapsules for thermal storage[D]. Beijing: University of Science and Technology Beijing, 2020. | |
92 | ZHANG Z, ZHANG Z, CHANG T, et al. Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in situ polymerization[J]. Chemical Engineering Journal, 2022, 428: doi: 10.1016/j.cej.2021.131164. |
93 | LIU C Z, RAO Z H, ZHAO J T, et al. Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement[J]. Nano Energy, 2015, 13: 814-826. |
94 | FU W W, LIANG X H, XIE H Z, et al. Thermophysical properties of n-tetradecane@polystyrene-silica composite nanoencapsulated phase change material slurry for cold energy storage[J]. Energy and Buildings, 2017, 136: 26-32. |
95 | LIN X W, ZHANG X L, JI J, et al. Research progress on preparation, characterization, and application of nanoparticle-based microencapsulated phase change materials[J]. International Journal of Energy Research, 2021, 45(7): 9831-9857. |
96 | 朱肖运. 基于界面聚合法制备相变胶囊及其应用研究[D]. 广州: 广东工业大学, 2022. |
ZHU X Y. Preparation of phase change capsules based on interfacial polymerization and its application[D]. Guangzhou: Guangdong University of Technology, 2022. | |
97 | DO J Y, SON N, SHIN J, et al. N-Eicosane-Fe3O4@SiO2@Cu microcapsule phase change material and its improved thermal conductivity and heat transfer performance[J]. Materials & Design, 2021, 198: doi: 10.1016/j.matdes.2020.109357. |
98 | ALVA G, LIN Y X, LIU L K, et al. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review[J]. Energy and Buildings, 2017, 144: 276-294. |
99 | PENG H, ZHANG D, LING X, et al. n-alkanes phase change materials and their microencapsulation for thermal energy storage: A critical review[J]. Energy & Fuels, 2018, 32(7): 7262-7293. |
100 | FANG G, LI H, LIU X, et al. Experimental investigation of performances of microcapsule phase change material for thermal energy storage[J]. Chemical Engineering & Technology, 2010, 33(2): 227-230. |
101 | WANG S, LEI K, WANG Z Y, et al. Metal-based phase change material (PCM) microcapsules/nanocapsules: Fabrication, thermophysical characterization and application[J]. Chemical Engineering Journal, 2022, 438: doi: 10.1016/j.cej.2022.135559. |
102 | ZHANG H F, BALRAM A, TIZNOBAIK H, et al. Microencapsulation of molten salt in stable silica shell via a water-limited Sol-gel process for high temperature thermal energy storage[J]. Applied Thermal Engineering, 2018, 136: 268-274. |
103 | LEE J, JO B. Synthesis and thermal performance of microencapsulated binary carbonate molten salts for solar thermal energy storage[J]. Energy & Fuels, 2021, 35(17): 14130-14139. |
104 | YANG T. The application of nanocapsule phase change material in the construction of civil engineering[J]. Arabian Journal of Geosciences, 2021, 14(11): doi: 10.1007/s12517-021-07296-9. |
105 | LI J, ZHU X Y, WANG H C, et al. Synthesis and properties of multifunctional microencapsulated phase change material for intelligent textiles[J]. Journal of Materials Science, 2021, 56(3): 2176-2191. |
106 | 张博. 槽式太阳能集热管真空性能无损检测技术及其装置研究[D]. 太原: 中北大学, 2022. |
ZHANG B. Research on nondestructive testing technology and device for vacuum performance of parabolic trough solar receivers[D]. Taiyuan: North University of China, 2022. | |
107 | WANG X N, LI W G, LUO Z Y, et al. A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application[J]. Energy and Buildings, 2022, 260: doi: 10.1016/j.enbuild. 2022.111923. |
108 | CHENG J J, ZHOU Y, MA D, et al. Preparation and characterization of carbon nanotube microcapsule phase change materials for improving thermal comfort level of buildings[J]. Construction and Building Materials, 2020, 244: doi: 10.1016/j.conbuildmat.2020.118388. |
109 | WANG Y B, LI J W, MIAO W J, et al. Preparation and characterizations of hydroxyapatite microcapsule phase change materials for potential building materials[J]. Construction and Building Materials, 2021, 297: doi: 10.1016/j.conbuildmat. 2021.123576. |
110 | BEYHAN B, CELLAT K, KONUKLU Y, et al. Robust microencapsulated phase change materials in concrete mixes for sustainable buildings[J]. International Journal of Energy Research, 2017, 41(1): 113-126. |
111 | ZHAO J J, ZHOU J H, LI H, et al. Cuprous oxide modified nanoencapsulated phase change materials fabricated by RAFT miniemulsion polymerization for thermal energy storage and photothermal conversion[J]. Powder Technology, 2022, 399: doi: 10.1016/j.powtec.2022.117189. |
112 | XU R, XIA X M, WANG W, et al. Infrared camouflage fabric prepared by paraffin phase change microcapsule with Good thermal insulting properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591: doi: 10.1016/ j.colsurfa.2020.124519. |
113 | GAO Y, ZHANG W H, HAN N, et al. Cotton fabric containing photochromic microcapsules combined thermal energy storage features[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: doi: 10.1016/j.colsurfa. 2022.129249. |
114 | GU M, ZHANG W, HAO S, et al. Ultraviolet light-initiated preparation of phase change material microcapsules and its infrared imaging effect on fabric[J]. Pigment & Resin Technology, 2020, 50(2): 129-135. |
115 | DENG Y X, XU J, LI Y N, et al. Study of the phase-change thermal-storage characteristics of a solar collector[J]. Materials (Basel, Switzerland), 2022, 15(21): doi: 10.3390/ma15217497. |
116 | LIU H, TIAN D L, ZHENG Z H, et al. MXene-decorated magnetic phase-change microcapsules for solar-driven continuous seawater desalination with easy salt accumulation elimination[J]. Chemical Engineering Journal, 2023, 458: doi: 10.1016/j.cej.2023.141395. |
117 | SERALE G, GOIA F, PERINO M. Numerical model and simulation of a solar thermal collector with slurry phase change material (PCM) as the heat transfer fluid[J]. Solar Energy, 2016, 134: 429-444. |
118 | TIAN L T, LIU J Z, WU Z Z, et al. Experimental study on photovoltaic/thermal system performance based on microencapsulated phase change material slurry[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, 44(2): 4494-4509. |
119 | ZHENG Y, LI X M, ZHANG W J, et al. Experimental study of phase change microcapsule suspensions applied in BIPV construction[J]. Sustainability, 2022, 14(17): doi: 10.3390/su141710819. |
120 | ZHANG Q Q, SUN Z C, GUO Q W, et al. Construction of excellent visible light absorption heat storage slurry using phase change microcapsules for solar thermal utilization[J]. ChemistrySelect, 2022, 7(33): doi: 10.1002/slct.202202124. |
121 | GAO G R, ZHANG T X, JIAO S K, et al. Preparation of reduced graphene oxide modified magnetic phase change microcapsules and their application in direct absorption solar collector[J]. Solar Energy Materials and Solar Cells, 2020, 216: doi: 10.1016/j.solmat.2020.110695. |
122 | ZHANG W, CHENG H, PAN R, et al. Phase change microcapsules with a polystyrene/boron nitride nanosheet hybrid shell for enhanced thermal management of electronics[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2022, 38(51): 16055-16066. |
123 | CHALCO-SANDOVAL W, FABRA M J, LÓPEZ-RUBIO A, et al. Use of phase change materials to develop electrospun coatings of interest in food packaging applications[J]. Journal of Food Engineering, 2017, 192: 122-128. |
124 | LI F N, WANG X D, WU D Z. Fabrication of multifunctional microcapsules containing n-eicosane core and zinc oxide shell for low-temperature energy storage, photocatalysis, and antibiosis[J]. Energy Conversion and Management, 2015, 106: 873-885. |
125 | 张方, 胥建群, 黄喜军. 基于PCMS流动和传热特性凝汽器的节水节能研究[J]. 中国电机工程学报, 2017, 37(10): 2905-2912. |
ZHANG F, XU J Q, HUANG X J. Research on water and energy conservation of the condenser based on characteristics of flow and heat transfer of PCMS[J]. Proceedings of the CSEE, 2017, 37(10): 2905-2912. | |
126 | ZHANG J J, YANG C H, JIN Z G, et al. Experimental study of jet impingement heat transfer with microencapsulated phase change material slurry[J]. Applied Thermal Engineering, 2021, 188: doi: 10.1016/j.applthermaleng.2021.116588. |
127 | ZHANG X Y, WANG X D, WU D Z. Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectiveness[J]. Energy, 2016, 111: 498-512. |
128 | ZHANG M, SHEN H H, QIAN Z Q, et al. Dual-purpose applications of magnetic phase-change microcapsules with crystalline-phase-tunable CaCO3 shell for waste heat recovery and heavy metal ion removal[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105672. |
[1] | Hongbing CHEN, Xuening GAO, Tao LIU, Congcong WANG, Rui ZHAO, Junhui SUN, Chuanling WANG, Di HE. Performance of a solar PV/T system applying a paraffin/graphene oxide composite phase change material [J]. Energy Storage Science and Technology, 2023, 12(3): 661-668. |
[2] | Wei LIU, Zhenming LI, Mingyang LIU, Cenyu YANG, Chao MEI, Ying LI. Review of high-temperature phase change heat storage material preparation and applications [J]. Energy Storage Science and Technology, 2023, 12(2): 398-430. |
[3] | Shigang LUO, Wei ZHANG, Weiwu LI, Yongli BAI. A day-ahead optimized operation of integrated energy system and prosumers with flexible economic regulation of electric/thermal storage [J]. Energy Storage Science and Technology, 2023, 12(2): 486-495. |
[4] | Xueqing SHEN, Wei CHEN. Thermal management performance of batteries with embedded tree-like fins for phase transition layers [J]. Energy Storage Science and Technology, 2023, 12(2): 459-467. |
[5] | Jinmei DONG, Qiyuan LIU, Fang WU, Lirui JIA, Jing WEN, Chenggong CHANG, Weixin ZHENG, Xueying XIAO. Phase change characteristics and proportion adjustment of fatty acid binary energy storage materials [J]. Energy Storage Science and Technology, 2023, 12(2): 349-356. |
[6] | Yucheng DAI, Zengpeng WANG, Kaibao LIU, Jiateng ZHAO, Changhui LIU. Research progress of heat storage and heat transfer enhancement based on phase change materials [J]. Energy Storage Science and Technology, 2023, 12(2): 431-458. |
[7] | Qianjun MAO, Yuanyuan ZHU. Study on heat storage performance of novel bifurcated fins to strengthen shell-and-tube energy storage tanks [J]. Energy Storage Science and Technology, 2023, 12(1): 69-78. |
[8] | Fa MAO, Xuelai ZHANG, Weisan HUA. Research progress of aluminum potassium sulfate dodecahydrate phase-change material for thermal energy storage [J]. Energy Storage Science and Technology, 2023, 12(1): 120-130. |
[9] | Junlei WANG, Diling ZHANG, Kun WANG, Dongdong XU, Xianggui XU, Hua YAO, Wenwei LIU, Yun HUANG. Carbonates/blast furnace slag form-stable phase change materials [J]. Energy Storage Science and Technology, 2022, 11(9): 3028-3034. |
[10] | Hong LI, Qiang ZHANG. A review of energy storage science and technology projects supported by national key R&D program [J]. Energy Storage Science and Technology, 2022, 11(9): 2691-2701. |
[11] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
[12] | Jinpeng HAO, Yingchun DU, Hong WU, Kun HE, Lei WANG. Numerical investigation of electrohydrodynamic solid-liquid phase change in square enclosure with sinusoidal temperature distribution [J]. Energy Storage Science and Technology, 2022, 11(5): 1446-1454. |
[13] | Shuankui LI, Yuan LIN, Feng PAN. Research progress in thermal energy storage and conversion technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562. |
[14] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. |
[15] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||