Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (11): 4124-4132.doi: 10.19799/j.cnki.2095-4239.2024.0560
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Ruirui ZHAO1(), Yanqiu PENG1, Xuejun LAI1, Zhilong WU1, Jie GAO1, Wencheng XU1, Lina WANG1, Qin DING1, Yongjin FANG2, Yuliang CAO2()
Received:
2024-06-21
Revised:
2024-07-14
Online:
2024-11-28
Published:
2024-11-27
Contact:
Yuliang CAO
E-mail:029018@evebattery.com;ylcao@whu.edu.cn
CLC Number:
Ruirui ZHAO, Yanqiu PENG, Xuejun LAI, Zhilong WU, Jie GAO, Wencheng XU, Lina WANG, Qin DING, Yongjin FANG, Yuliang CAO. Capacity fading mechanism of Na4Fe3(PO4)2P2O7 based sodium-ion battery during calendar aging[J]. Energy Storage Science and Technology, 2024, 13(11): 4124-4132.
1 | FANG Y J, XIAO L F, CHEN Z X, et al. Recent advances in sodium-ion battery materials[J]. Electrochemical Energy Reviews, 2018, 1(3): 294-323. DOI: 10.1007/s41918-018-0008-x. |
2 | 曹余良. 钠离子电池机遇与挑战[J]. 储能科学与技术, 2020, 9(3): 757-761. DOI: 10.19799/j.cnki.2095-4239.2020.0026. |
CAO Y L. The opportunities and challenges of sodium ion battery[J]. Energy Storage Science and Technology, 2020, 9(3): 757-761. DOI: 10.19799/j.cnki.2095-4239.2020.0026. | |
3 | ZHAO A L, LIU C Y, JI F J, et al. Revealing the phase evolution in Na4FexP4O12+ x (2≤x≤4) cathode materials[J]. ACS Energy Letters, 2023, 8(1): 753-761. DOI: 10.1021/acsenergylett.2c02693. |
4 | 郭慧芳, 程树国, 郑舒. 从电解液看磷酸铁锂动力锂离子电池失效[J]. 电池, 2023, 53(5): 549-553. DOI: 10.19535/j.1001-1579. 2023.05.018. |
GUO H F, CHENG S G, ZHENG S. Failure of lithium iron phosphate power Li-ion battery seen from electrolyte[J]. Battery Bimonthly, 2023, 53(5): 549-553. DOI: 10.19535/j.1001-1579.2023.05.018. | |
5 | VETTER J, NOVÁK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1/2): 269-281. DOI: 10.1016/j.jpowsour.2005.01.006. |
6 | MARKOVSKY B, RODKIN A, COHEN Y S, et al. The study of capacity fading processes of Li-ion batteries: Major factors that play a role[J]. Journal of Power Sources, 2003, 119: 504-510. DOI: 10.1016/S0378-7753(03)00274-X. |
7 | ZHUANG G V, ROSS P N. Analysis of the chemical composition of the passive film on Li-ion battery anodes using attentuated total reflection infrared spectroscopy[J]. Electrochemical and Solid-State Letters, 2003, 6(7): A136. DOI: 10.1149/1.1575594. |
8 | HELLQVIST KJELL M, MALMGREN S, CIOSEK K, et al. Comparing aging of graphite/LiFePO4 cells at 22 ℃ and 55 ℃-Electrochemical and photoelectron spectroscopy studies[J]. Journal of Power Sources, 2013, 243: 290-298. DOI: 10.1016/j.jpowsour.2013.06.011. |
9 | SCHMITT J, MAHESHWARI A, HECK M, et al. Impedance change and capacity fade of lithium nickel manganese cobalt oxide-based batteries during calendar aging[J]. Journal of Power Sources, 2017, 353: 183-194. DOI: 10.1016/j.jpowsour. 2017. 03.090. |
10 | MOGENSEN R, BRANDELL D, YOUNESI R. Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries[J]. ACS Energy Letters, 2016, 1(6): 1173-1178. DOI: 10.1021/acsenergylett.6b00491. |
11 | ZHAN C, WU T P, LU J, et al. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes-a critical review[J]. Energy & Environmental Science, 2018, 11(2): 243-257. DOI: 10.1039/C7EE03122J. |
12 | ZHANG Y X, KIM J C, SONG H W, et al. Recent achievements toward the development of Ni-based layered oxide cathodes for fast-charging Li-ion batteries[J]. Nanoscale, 2023, 15(9): 4195-4218. DOI: 10.1039/d2nr05701h. |
13 | 赵旭瞳, 龚文琦, 沈琪彬, 等. 嵌钠深度对离电钠离子电池碳极储硬碳负极存储能性能的响影响[J]. 广州化学, 2023, 48(6): 57-60+69. |
14 | MA L A, NAYLOR A J, NYHOLM L, et al. Strategies for mitigating dissolution of solid electrolyte interphases in sodium-ion batteries[J]. Angewandte Chemie (International Ed), 2021, 60(9): 4855-4863. DOI: 10.1002/anie.202013803. |
15 | LIU K L, ASHWIN T R, HU X S, et al. An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110017. DOI: 10.1016/j.rser.2020.110017. |
16 | 储能技术领航.鹏辉能源2023新一代电芯发布[EB/OL]. [2023-04-11]. https://news.bjx.com.cn/html/20230411/1300394.shtml. |
17 | RIKKA V R, SAHU S R, GURUMURTHY M, et al. Temperature-derived Fe dissolution of a LiFePO4/graphite cell at fast charging and high state-of-charge condition[J]. Energy Technology, 2023, 11(11): 2201388. DOI: 10.1002/ente.202201388. |
18 | 周权. 高功率高安全钠离子电池研究及失效分析[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2021. DOI: 10.27604/d.cnki.gwlys.2021.000031. |
19 | LIU Y, XIE K, PAN Y, et al. Impacts of the properties of anode solid electrolyte interface on the storage life of Li-ion batteries[J]. The Journal of Physical Chemistry C, 2018, 122(17): 9411-9416. DOI: 10.1021/acs.jpcc.7b11757. |
20 | TASAKI K, GOLDBERG A, LIAN J J, et al. Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents[J]. Journal of the Electrochemical Society, 2009, 156(12): A1019. DOI: 10.1149/1.3239850. |
21 | WANG E H, WAN J, GUO Y J, et al. Mitigating electron leakage of solid electrolyte interface for stable sodium-ion batteries[J]. Angewandte Chemie (International Ed), 2023, 62(4): e202216354. DOI: 10.1002/anie.202216354. |
22 | LIU M Q, WU F, GONG Y T, et al. Interfacial-catalysis-enabled layered and inorganic-rich SEI on hard carbon anodes in ester electrolytes for sodium-ion batteries[J]. Advanced Materials, 2023, 35(29): e2300002. DOI: 10.1002/adma.202300002. |
23 | LV Z Q, LI T Y, HOU X, et al. Solvation structure and solid electrolyte interface engineering for excellent Na+ storage performances of hard carbon with the ether-based electrolytes[J]. Chemical Engineering Journal, 2022, 430: 133143. DOI: 10.1016/j.cej.2021.133143. |
24 | HU J Y, WANG H W, YUAN F, et al. Deciphering the formation and accumulation of solid-electrolyte interphases in Na and K carbonate-based batteries[J]. Nano Letters, 2024, 24(5): 1673-1678. DOI: 10.1021/acs.nanolett.3c04401. |
[1] | Yuhang YUAN, Yuchen GAO, Jundong ZHANG, Yanbin GAO, Chaolong WANG, Xiang CHEN, Qiang ZHANG. The application of large language models in energy storage research [J]. Energy Storage Science and Technology, 2024, 13(9): 2907-2919. |
[2] | Dameng LIU, Xuepeng MOU, Bohao SHI, Julong CHEN, Bin WANG, Chen LUO, Chengjun ZHONG, Sizhe CHEN. Multi-software collaborative modeling method for mechanical and electrical co-simulation of slope gravity energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(9): 3266-3276. |
[3] | Jiahui HUANG, Zhufang KUANG. The forefront of the integration of artificial intelligence and energy storage technologies [J]. Energy Storage Science and Technology, 2024, 13(9): 3161-3181. |
[4] | Guobing ZHOU, Shenzhen XU. Progress of theoretical studies on the formation and growth mechanisms of solid electrolyte interphase at lithium metal anodes [J]. Energy Storage Science and Technology, 2024, 13(9): 3150-3160. |
[5] | Jing XU, Yuqi WANG, Xiao FU, Qifan YANG, Jingchen LIAN, Liqi WANG, Ruijuan XIAO. Discovery of new battery materials based on a big data approach [J]. Energy Storage Science and Technology, 2024, 13(9): 2920-2932. |
[6] | Bin DENG, Haiming HUA, Yuzhi ZHANG, Xiaoxu WANG, Linfeng ZHANG. Deep potential model: Applications and insights for electrochemical energy storage materials [J]. Energy Storage Science and Technology, 2024, 13(9): 2884-2906. |
[7] | Jie LUO, Zhigao SUN, Juan LI, Cuimin LI, Haifeng HUANG. Effect of surfactant SG-10 on HCFC-141b hydrate formation and cold storage under static conditions [J]. Energy Storage Science and Technology, 2024, 13(8): 2615-2622. |
[8] | Zhanwei LI, Dongfang FAN, Chao ZENG, Wenqian HE, Jin HE. Research on capacity optimization configuration and operation strategy of energy storage system considering wind and solar consumption [J]. Energy Storage Science and Technology, 2024, 13(8): 2713-2725. |
[9] | Yunhan LIU, Liang WANG, Shuang ZHANG, Xipeng LIN, Zhiwei GE, Yakai BAI, Lin LIN, Yifei WANG, Haisheng CHEN. Experimental study on heat storage and discharge characteristics of packed bed based on hydrated salt using cylindrical encapsulation units [J]. Energy Storage Science and Technology, 2024, 13(8): 2623-2633. |
[10] | Yuguang LI, Xiang LIU, Yanzhao LIANG, Shuangzhen LIU. Research on the application of flywheel energy storage device in rail transit [J]. Energy Storage Science and Technology, 2024, 13(8): 2679-2686. |
[11] | Qianqian ZHOU, Yong HUANG, Ke CUI, Danan SUN. Research and test verification on simulation technology of motor temperature field of flywheel energy storage device [J]. Energy Storage Science and Technology, 2024, 13(8): 2589-2596. |
[12] | Dingbang HAO, Yongli LI. Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05@CuO cathode materials for high-rate and long cycling stability sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2489-2498. |
[13] | Qun GE, Tao LIANG, Bin HOU, Wanhong WANG, Long ZHANG, Liangyu WU, Chengbin ZHANG, Xiangdong LIU. Performance enhancement of thermal energy storage units for plant factories [J]. Energy Storage Science and Technology, 2024, 13(8): 2687-2695. |
[14] | Yu LI, Junxiong ZHANG, Hongming FAN. Experimental study of a novel mini-channel phase change heat sink [J]. Energy Storage Science and Technology, 2024, 13(8): 2597-2604. |
[15] | Ye CHEN, Jin LI, Houfu WU, Shaoyu ZHANG, Yuxi CHU, Ping ZHUO. Analysis of thermal runaway propagation and explosion risk of a large battery module for energy storage [J]. Energy Storage Science and Technology, 2024, 13(8): 2803-2812. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||