Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (2): 611-622.doi: 10.19799/j.cnki.2095-4239.2023.0574
• Energy Storage System and Engineering • Previous Articles Next Articles
Liugan ZHANG1,2(), Yingchi ZHOU3, Wenbing SUN3, Kai YE2, Longxiang CHEN2,4()
Received:
2023-08-24
Revised:
2023-08-31
Online:
2024-02-28
Published:
2024-03-01
Contact:
Longxiang CHEN
E-mail:zhanglg0921@163.com;chenlx@fjirsm.ac.cn
CLC Number:
Liugan ZHANG, Yingchi ZHOU, Wenbing SUN, Kai YE, Longxiang CHEN. Performance of precooled CAES system using ORC-VCR to recover compression heat[J]. Energy Storage Science and Technology, 2024, 13(2): 611-622.
Table 3
Thermodynamic data for main working fluid in ORC-VCR-CAES system"
状态点 | 温度/℃ | 压力/kPa | 焓值/(kJ/kg) | 流量/(kg/s) | 状态点 | 温度/℃ | 压力/kPa | 焓值/(kJ/kg) | 流量/(kg/s) |
---|---|---|---|---|---|---|---|---|---|
1 | 25.00 | 101.30 | 298.45 | 107.06 | 1b | 30.00 | 793.85 | 252.81 | 102.07 |
2 | 25.00 | 101.30 | 298.45 | 107.06 | 2b | 32.33 | 4105.27 | 257.46 | 102.07 |
3 | 153.04 | 302.37 | 427.71 | 107.06 | 3b | 32.33 | 4105.27 | 257.46 | 24.91 |
4 | 75.00 | 299.35 | 348.51 | 107.06 | 4b | 133.04 | 4105.27 | 597.86 | 24.91 |
5 | 45.00 | 296.36 | 318.20 | 107.06 | 5b | 32.33 | 4105.27 | 257.46 | 25.06 |
6 | 25.00 | 293.39 | 298.01 | 107.06 | 6b | 133.19 | 4105.27 | 598.17 | 25.06 |
7 | 153.19 | 875.76 | 427.34 | 107.06 | 7b | 32.33 | 4105.27 | 257.46 | 25.48 |
8 | 75.00 | 867.00 | 347.59 | 107.06 | 8b | 133.59 | 4105.27 | 599.00 | 25.48 |
9 | 45.00 | 858.33 | 317.09 | 107.06 | 9b | 32.33 | 4105.27 | 257.46 | 26.62 |
10 | 25.00 | 849.74 | 296.74 | 107.06 | 10b | 134.51 | 4105.27 | 600.87 | 26.62 |
11 | 153.59 | 2536.43 | 426.30 | 107.06 | 11b | 133.60 | 4105.27 | 599.01 | 102.07 |
12 | 75.00 | 2511.06 | 345.00 | 107.06 | 12b | 54.08 | 793.85 | 553.62 | 102.07 |
13 | 45.00 | 2485.95 | 313.94 | 107.06 | 1c | 30.00 | 793.85 | 252.81 | 24.32 |
14 | 25.00 | 2461.09 | 293.13 | 107.06 | 2c | 15.00 | 438.59 | 252.81 | 24.32 |
15 | 154.51 | 7346.19 | 423.51 | 107.06 | 3c | 15.00 | 438.59 | 252.81 | 8.25 |
16 | 75.00 | 7272.73 | 338.12 | 107.06 | 4c | 20.00 | 438.59 | 522.89 | 8.25 |
17 | 45.00 | 7200.00 | 305.47 | 107.06 | 5c | 15.00 | 438.59 | 252.81 | 8.07 |
18 | 25.00 | 7200.00 | 283.21 | 160.58 | 6c | 20.00 | 438.59 | 522.89 | 8.07 |
19 | 19.28 | 4200.00 | 283.21 | 160.58 | 7c | 15.00 | 438.59 | 252.81 | 8.00 |
20 | 155.00 | 4158.00 | 426.42 | 160.58 | 8c | 20.00 | 438.59 | 522.89 | 8.00 |
21 | -0.96 | 652.27 | 270.81 | 160.58 | 9c | 15.00 | 438.59 | 252.81 | 0.00 |
22 | 155.00 | 645.75 | 429.40 | 160.58 | 10c | 20.00 | 438.59 | 522.89 | 0.00 |
23 | 0.36 | 101.30 | 273.65 | 160.58 | 11c | 20.00 | 438.59 | 522.89 | 24.32 |
— | — | — | — | — | 12c | 49.63 | 793.85 | 547.88 | 24.32 |
Table A1
Estimation methods of the investment costs of components in the ORC-VCR-CAES system"
设备 | 计算方法 |
---|---|
空气压缩机[ | |
空气膨胀机[ | |
换热器[ | |
制冷压缩机[ | |
ORC膨胀机[ | |
ORC泵[ | |
空气储罐[ |
1 | 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076. |
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. | |
2 | GUO C B, PAN L H, ZHANG K N, et al. Comparison of compressed air energy storage process in aquifers and Caverns based on the Huntorf CAES plant[J]. Applied Energy, 2016, 181: 342-356. |
3 | 郭欢, 徐玉杰, 张新敬, 等. 蓄热式压缩空气储能系统变工况特性[J]. 中国电机工程学报, 2019, 39(5): 1366-1377. |
GUO H, XU Y J, ZHANG X J, et al. Off-design performance of compressed air energy storage system with thermal storage[J]. Proceedings of the CSEE, 2019, 39(5): 1366-1377. | |
4 | BAZDAR E, NASIRI F, HAGHIGHAT F. An improved energy management operation strategy for integrating adiabatic compressed air energy storage with renewables in decentralized applications[J]. Energy Conversion and Management, 2023, 286: 117027. |
5 | HARTMANN N, VÖHRINGER O, KRUCK C, et al. Simulation and analysis of different adiabatic compressed air energy storage plant configurations[J]. Applied Energy, 2012, 93: 541-548. |
6 | 韩中合, 孙烨, 李鹏, 等. 基于AA-CAES的冷热电三联产系统的热经济性分析[J]. 太阳能学报, 2022, 43(2): 97-103. |
HAN Z H, SUN Y, LI P, et al. Thermo-economic analysis of trigeneration system based on AA-CAES[J]. Acta Energiae Solaris Sinica, 2022, 43(2): 97-103. | |
7 | 朱瑞, 徐玉杰, 李斌, 等. 太阳能蓄热式压缩空气储能系统特性分析[J]. 太阳能学报, 2019, 40(6): 1536-1544. |
ZHU R, XU Y J, LI B, et al. Performance analysis on solar heat storage type compressed air energy storage system[J]. Acta Energiae Solaris Sinica, 2019, 40(6): 1536-1544. | |
8 | 薛小军, 李云飞, 田煜昆, 等. 与燃煤电站耦合的压缩空气储能系统性能分析[J]. 动力工程学报, 2022, 42(9): 835-842, 880. |
XUE X J, LI Y F, TIAN Y K, et al. Performance analysis of compressed air energy storage system coupled with coal-fired power plant[J]. Journal of Chinese Society of Power Engineering, 2022, 42(9): 835-842, 880. | |
9 | KRUK-GOTZMAN S, ZIÓŁKOWSKI P, ILIEV I, et al. Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept[J]. Energy, 2023, 266: 126345. |
10 | 许云婷, 田冉, 戴晓业, 等. 基于实际换热的ORC亚/跨临界综合评价[J]. 工程热物理学报, 2022, 43(2): 296-303. |
XU Y T, TIAN R, DAI X Y, et al. Comprehensive evaluation of subcritical/supercritical ORC based on actual heat transfer[J]. Journal of Engineering Thermophysics, 2022, 43(2): 296-303. | |
11 | 肖力木, 高欣, 张世海, 等. 耦合LNG及ORC的液态空气储能系统热力学分析[J]. 储能科学与技术, 2023, 12(1): 155-164. |
XIAO L M, GAO X, ZHANG S H, et al. Thermodynamic analysis on the liquid air energy storage system with liquid natural gas and organic Rankine cycle[J]. Energy Storage Science and Technology, 2023, 12(1): 155-164. | |
12 | MENG H, WANG M H, ANEKE M, et al. Technical performance analysis and economic evaluation of a compressed air energy storage system integrated with an organic Rankine cycle[J]. Fuel, 2018, 211: 318-330. |
13 | CHEN L X, HU P, SHENG C C, et al. A novel compressed air energy storage (CAES) system combined with pre-cooler and using low grade waste heat as heat source[J]. Energy, 2017, 131: 259-266. |
14 | XIA X X, LIU Z P, WANG Z Q, et al. Multi-layer performance optimization based on operation parameter-working fluid-heat source for the ORC-VCR system[J]. Energy, 2023, 272: 127103. |
15 | 张伟明, 李科群, 陈书甜. 内燃机尾气余热驱动有机朗肯蒸汽压缩制冷循环的研究[J]. 内燃机工程, 2019, 40(1): 65-71. |
ZHANG W M, LI K Q, CHEN S T. Research on organic Rankine cycle-vapor compression refrigeration system driven by exhaust heat of an IC engine[J]. Chinese Internal Combustion Engine Engineering, 2019, 40(1): 65-71. | |
16 | JIANG H Y, RONG Y, ZHOU X, et al. Performance assessment of an organic Rankine-vapor compression cycle (ORC-VCR) for low-grade compression heat recovery[J]. Energy Conversion and Management, 2023, 275: 116492. |
17 | 薛小军, 胡刚刚, 陈衡, 等. 与生物质气化联合循环系统耦合的压缩空气储能系统性能分析[J]. 中国电机工程学报, 2023, 43(19): 7569-7580. |
XUE X J, HU G G, CHEN H, et al. Performance assessment of compressed air energy storage system coupled with biomass integrated gasification combined cycle system[J]. Proceedings of the CSEE, 2023, 43(19): 7569-7580. | |
18 | 杨承, 王旭升, 张驰, 等. 太阳能与压缩空气耦合储能的燃气轮机CCHP系统特性[J]. 中国电机工程学报, 2017, 37(18): 5350-5358, 5534. |
YANG C, WANG X S, ZHANG C, et al. Performances of gas turbine-based CCHP system combined with solar and compressed air energy storage[J]. Proceedings of the CSEE, 2017, 37(18): 5350-5358, 5534. | |
19 | CALM J M, HOURAHAN G C. Physical, safety, and environmental data for current and alternative refrigerants[C]// 23th international congress of refrigeration. 2011. |
20 | LASHGARI F, BABAEI S M, PEDRAM M Z, et al. Comprehensive analysis of a novel integration of a biomass-driven combined heat and power plant with a compressed air energy storage (CAES)[J]. Energy Conversion and Management, 2022, 255: 115333. |
21 | SHERWANI A F, TIWARI D. Exergy, economic and environmental analysis of organic Rankine cycle based vapor compression refrigeration system[J]. International Journal of Refrigeration, 2021, 126: 259-271. |
22 | DING X Q, DUAN L Q, ZHOU Y F, et al. Energy, exergy, and economic analyses of a new liquid air energy storage system coupled with solar heat and organic Rankine cycle[J]. Energy Conversion and Management, 2022, 266: 115828. |
[1] | Wen DU, Junlei WANG, Yunfei XU, Shilong LI, Kun WANG. Techno-economic analysis for the preparation of Li-ion battery's ternary cathode material using flame spray pyrolysis [J]. Energy Storage Science and Technology, 2024, 13(1): 345-357. |
[2] | Wenhui LI, Yonghan JIAO, Ge GUO, Jiajun LI, Jianqiang DENG. Research on improving cooling performance of compressed air energy storage system [J]. Energy Storage Science and Technology, 2023, 12(9): 2833-2841. |
[3] | Yonghong XU, Yuting WU, Hongguang ZHANG, Fubin YANG, Yan WANG. Experimental study on a micro-compressed air energy storage system based on a pneumatic motor [J]. Energy Storage Science and Technology, 2023, 12(6): 1854-1861. |
[4] | Xiaoxia SUN, Zhonghua GUI, Ziyu GAO, Bingqian ZHOU, Xia LIU, Xinjing ZHANG, Huan GUO, Wen LI, Yong SHENG, Yangli ZHU, Jian ZHOU, Yujie XU. Dynamic characteristics of compressed air energy storage system [J]. Energy Storage Science and Technology, 2023, 12(6): 1840-1853. |
[5] | Weiling ZHANG, Han GU, Chao ZHANG, Ang GE, Yuanxu YING. Technical economic characteristics and development trends of compressed air energy storage [J]. Energy Storage Science and Technology, 2023, 12(4): 1295-1301. |
[6] | Qihui YU, Zhigang WEI, Guoxin SUN, Liang LU. Experimental and performance study of spray heat transfer-based compressed air quasi-isothermal expansion system [J]. Energy Storage Science and Technology, 2023, 12(3): 878-888. |
[7] | Fuchao LI, Mingbiao CHEN, Qun DU, Yongzhen CHEN, Wenji SONG, Wenye LIN, Ziping FENG. Research on in-situ remote offshore wind-power consumption based on ice-slurry cold storage [J]. Energy Storage Science and Technology, 2023, 12(12): 3730-3739. |
[8] | Hang YIN, Qiang WANG, Jiahua ZHU, Zhirong LIAO, Zinan ZHANG, Ershu XU, Chao XU. Thermodynamic analysis of an advanced adiabatic compressed-air energy storage system coupled with molten salt heat and storage-organic Rankine cycle [J]. Energy Storage Science and Technology, 2023, 12(12): 3749-3760. |
[9] | Kaixuan WANG, Zhitao ZUO, Qi LIANG, Wenbin GUO, Haisheng CHEN. Performance prediction methods for centrifugal compressors: A review [J]. Energy Storage Science and Technology, 2023, 12(11): 3435-3444. |
[10] | Limu XIAO, Xin GAO, Shihai ZHANG, Xiankui WEN. Thermodynamic analysis on the liquid air energy storage system with liquid natural gas and organic Rankine cycle [J]. Energy Storage Science and Technology, 2023, 12(1): 155-164. |
[11] | WU Yuting, KOU Zhenfeng, ZHANG Cancan, WU Yiyang. Analysis of the dynamic distribution parameters of a solid sodium chloride column heat exchanger [J]. Energy Storage Science and Technology, 2022, 11(6): 1988-1995. |
[12] | ZHANG Ping, KANG Libin, WANG Mingju, ZHAO Guang, LUO Zhenhua, TANG Kun, LU Yaxiang, HU Yongsheng. Technology feasibility and economic analysis of Na-ion battery energy storage [J]. Energy Storage Science and Technology, 2022, 11(6): 1892-1901. |
[13] | Di LIU, Tiantian ZHANG, Yuwei PENG, Xiaomei TANG, Dan WANG, Chengxiong MAO. Shaft modeling and oscillation analysis for expansion process of compressed air energy storage system [J]. Energy Storage Science and Technology, 2022, 11(2): 563-572. |
[14] | Li SHENG, Xinjie XUE, Yanjun BO, Changying ZHAO. Simulation and analysis of pumped thermal electricity storage system based on phase change energy storage medium [J]. Energy Storage Science and Technology, 2022, 11(11): 3649-3657. |
[15] | Kai DING, Jian ZHENG, Wei LI, Zengrui HUANG, Yi WANG, Yimin QIAN, Zixuan ZHENG, Qi XIE. Hierarchical voltage sag mitigation scheme based on user-side energy storage systems and its economic analysis [J]. Energy Storage Science and Technology, 2022, 11(10): 3381-3390. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||