Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (11): 4370-4380.doi: 10.19799/j.cnki.2095-4239.2025.0526
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Xing HUANG(
), Jun CHEN(
), Fei LIU
Received:2025-06-03
Revised:2025-07-29
Online:2025-11-28
Published:2025-11-24
Contact:
Jun CHEN
E-mail:hx1792279290@163.com;chenjun1860@126.com
CLC Number:
Xing HUANG, Jun CHEN, Fei LIU. Robust state of energy estimation of lithium batteries under non-Gaussian noise conditions[J]. Energy Storage Science and Technology, 2025, 14(11): 4370-4380.
Table 1
Statistics of SoE estimation errors"
| 工况 | 算法 | 环境1 | 环境2 | 环境3 | 平均 | ||||
|---|---|---|---|---|---|---|---|---|---|
| MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | ||
| FUDS | CKF | 0.0658 | 0.0782 | 0.0705 | 0.0921 | 0.1218 | 0.1410 | 0.0860 | 0.1038 |
| MCCKF | 0.0417 | 0.0540 | 0.0472 | 0.0473 | 0.0704 | 0.0815 | 0.0531 | 0.0609 | |
| GMCCKF | 0.0338 | 0.0444 | 0.0460 | 0.0554 | 0.0579 | 0.0689 | 0.0459 | 0.0562 | |
| ITMCCKF | 0.0217 | 0.0272 | 0.0298 | 0.0347 | 0.0241 | 0.0290 | 0.0252 | 0.0303 | |
| US06 | CKF | 0.0399 | 0.0529 | 0.0560 | 0.0710 | 0.1027 | 0.1203 | 0.0662 | 0.0814 |
| MCCKF | 0.0353 | 0.0380 | 0.0282 | 0.0345 | 0.0619 | 0.0723 | 0.0418 | 0.0483 | |
| GMCCKF | 0.0268 | 0.0298 | 0.0261 | 0.0318 | 0.0584 | 0.0687 | 0.0371 | 0.0434 | |
| ITMCCKF | 0.0169 | 0.0195 | 0.0198 | 0.0240 | 0.0182 | 0.0235 | 0.0183 | 0.0223 | |
| BJDST | CKF | 0.0278 | 0.0320 | 0.0471 | 0.0568 | 0.0605 | 0.0754 | 0.0451 | 0.0547 |
| MCCKF | 0.0136 | 0.0153 | 0.0215 | 0.0264 | 0.0430 | 0.0556 | 0.0260 | 0.0324 | |
| GMCCKF | 0.0097 | 0.0124 | 0.0209 | 0.0256 | 0.0418 | 0.0547 | 0.0241 | 0.0309 | |
| ITMCCKF | 0.0087 | 0.0112 | 0.0150 | 0.0194 | 0.0124 | 0.0152 | 0.0120 | 0.0153 | |
Table 2
Statistics of SoE estimation error at 0 ℃"
| 工况 | 算法 | 环境1 | 环境2 | 环境3 | 平均 | ||||
|---|---|---|---|---|---|---|---|---|---|
| MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | ||
| FUDS | CKF | 0.0809 | 0.0879 | 0.0766 | 0.0936 | 0.1100 | 0.1315 | 0.0892 | 0.1043 |
| MCCKF | 0.0524 | 0.0598 | 0.0706 | 0.0813 | 0.0619 | 0.0744 | 0.0616 | 0.0718 | |
| GMCCKF | 0.0428 | 0.0486 | 0.0695 | 0.0801 | 0.0550 | 0.0675 | 0.0558 | 0.0654 | |
| ITMCCKF | 0.0246 | 0.0309 | 0.0470 | 0.0565 | 0.0166 | 0.0195 | 0.0294 | 0.0356 | |
| US06 | CKF | 0.0397 | 0.0435 | 0.0599 | 0.0722 | 0.0603 | 0.0721 | 0.0533 | 0.0626 |
| MCCKF | 0.0320 | 0.0416 | 0.0334 | 0.0407 | 0.0568 | 0.0671 | 0.0407 | 0.0498 | |
| GMCCKF | 0.0290 | 0.0390 | 0.0322 | 0.0391 | 0.0546 | 0.0669 | 0.0386 | 0.0483 | |
| ITMCCKF | 0.0136 | 0.0179 | 0.0212 | 0.0261 | 0.0118 | 0.0142 | 0.0155 | 0.0194 | |
| BJDST | CKF | 0.0309 | 0.0369 | 0.0441 | 0.0583 | 0.0752 | 0.0877 | 0.0500 | 0.0610 |
| MCCKF | 0.0290 | 0.0305 | 0.0214 | 0.0278 | 0.0699 | 0.0802 | 0.0401 | 0.0462 | |
| GMCCKF | 0.0184 | 0.0205 | 0.0209 | 0.0269 | 0.0505 | 0.0610 | 0.0299 | 0.0361 | |
| ITMCCKF | 0.0096 | 0.0122 | 0.0156 | 0.0191 | 0.0167 | 0.0185 | 0.0140 | 0.0166 | |
| [1] | Global EV Outlook 2025[EB/OL], 2025. https://www.iea.org/reports/global-ev-outlook-2025. |
| [2] | 韩佳洁, 苑清扬, 李郁, 等. 基于少测点数据驱动的大规模锂电池模组温度实时预测[J]. 工程科学学报, 2025, 47(5): 1103-1116. DOI: 10.13374/j.issn2095-9389.2024.05.23.002. |
| HAN J J, YUAN Q Y, LI Y, et al. Real-time temperature prediction of large-scale lithium battery module driven by data based on few measurement points[J]. Chinese Journal of Engineering, 2025, 47(5): 1103-1116. DOI: 10.13374/j.issn2095-9389.2024.05.23.002. | |
| [3] | 柳明贤, 李继标, 唐炳南, 等. 基于AUKF的可穿戴式设备用锂离子电池SOE在线估计方法[J]. 储能科学与技术, 2024, 13(5): 1688-1698. DOI: 10.19799/j.cnki.2095-4239.2023.0721. |
| LIU M X, LI J B, TANG B N, et al. Online state-of-energy estimation method for lithium-ion batteries used in wearable devices based on adaptive unscented Kalman filter[J]. Energy Storage Science and Technology, 2024, 13(5): 1688-1698. DOI: 10.19799/j.cnki.2095-4239.2023.0721. | |
| [4] | 郝雪祎. 基于粒子滤波优化的储能锂电池能量状态估算研究[D]. 绵阳: 西南科技大学, 2024. DOI: 10.27415/d.cnki.gxngc.2024.000775. |
| [5] | MA L, HU C, CHENG F. State of charge and state of energy estimation for lithium-ion batteries based on a long short-term memory neural network[J]. Journal of Energy Storage, 2021, 37: 102440. DOI: 10.1016/j.est.2021.102440. |
| [6] | 李锦满, 李儒欢, 李浩南, 等. 基于无迹卡尔曼滤波的动力电池状态估计[J]. 电池, 2024, 54(3): 340-343. DOI:10.19535/j.1001-1579.2024.03.010. |
| LI J M, LI R H, LI H N, et al. State estimation for power battery based on unscented Kalman filter[J]. Dianchi(Battery Bimonthly), 2024, 54(3): 340-343. DOI:10.19535/j.1001-1579.2024.03.010. | |
| [7] | ZHANG Y Z, HE H W, XIONG R. A data-driven based state of energy estimator of lithium-ion batteries used to supply electric vehicles[J]. Energy Procedia, 2015, 75: 1944-1949. DOI: 10.1016/j.egypro.2015.07.228. |
| [8] | JIA X Y, WANG S L, CAO W, et al. A novel genetic marginalized particle filter method for state of charge and state of energy estimation adaptive to multi-temperature conditions of lithium-ion batteries[J]. Journal of Energy Storage, 2023, 74: 109291. DOI: 10.1016/j.est.2023.109291. |
| [9] | WANG Y J, ZHANG C B, CHEN Z H. Model-based state-of-energy estimation of lithium-ion batteries in electric vehicles[J]. Energy Procedia, 2016, 88: 998-1004. DOI: 10.1016/j.egypro. 2016.06.125. |
| [10] | ZHANG W G, SHI W, MA Z Y. Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery[J]. Journal of Power Sources, 2015, 289: 50-62. DOI: 10.1016/j.jpowsour.2015.04.148. |
| [11] | LI X Y, XU J H, HONG J X, et al. State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy[J]. Energy, 2021, 214: 118858. DOI: 10.1016/j.energy.2020.118858. |
| [12] | 李晓涵, 孙磊, 马勇, 等. 基于Sage-Husa EKF算法的锂离子电池能量状态估计[J]. 储能科学与技术, 2022, 11 (11): 3603-3612. DOI: 10.19799/j.cnki.2095-4239.2022.0277. |
| LI X H, SUN L, MA Y, et al. Energy state estimation of lithium-ion batteries based on Sage-Husa EKF algorithm[J]. Energy Storage Science and Technology, 2022, 11 (11): 3603-3612. DOI: 10. 19799/j. cnki.2095-4239.2022.0277. | |
| [13] | 马彦, 郭则宣. 基于改进BPNN-MPF算法的锂离子电池SoE估计[J]. 吉林大学学报(工学版), 2023, 53(1): 263-272. DOI: 10.13229/j.cnki.jdxbgxb20210556. |
| MA Y, GUO Z X. SoE estimation of lithium-ion batteries based on improved BPNN-MPF algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 263-272. DOI: 10.13229/j.cnki.jdxbgxb20210556. | |
| [14] | 赵英杰, 张闯, 刘素贞, 等. 基于电极等效电路模型的锂离子电池无析锂快充策略优化研究[J]. 电工技术学报, 2024, 39(18): 5868-5882. DOI: 10.19595/j.cnki.1000-6753.tces.230990. |
| ZHAO Y J, ZHANG C, LIU S Z, et al. Optimization of fast charging strategy for lithium-ion batteries without deposition based on electrode equivalent circuit model[J]. Transactions of China Electrotechnical Society, 2024, 39(18): 5868-5882. DOI: 10.19595/j.cnki.1000-6753.tces.230990. | |
| [15] | SEYYEDABBASI A, KIANI F. Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems[J]. Engineering with Computers, 2023, 39(4): 2627-2651. DOI: 10.1007/s00366-022-01604-x. |
| [16] | HOU J, YANG Y, GAO T. A normal-gamma-based adaptive dual unscented Kalman filter for battery parameters and state-of-charge estimation with heavy-tailed measurement noise[J]. International Journal of Energy Research, 2020, 44(5): 3510-3525. DOI: 10. 1002/er.5042. |
| [17] | 张敬艳, 修建娟, 董凯. 噪声非高斯条件下基于最大相关熵准则的容积滤波算法[J]. 兵器装备工程学报, 2021, 42(8): 245-250. |
| ZHANG J Y, XIU J J, DONG K. Maximum correntropy cubature Kalman filter under non-Gaussian noise[J]. Journal of Ordnance Equipment Engineering, 2021, 42(8): 245-250. | |
| [18] | CALCE Battery Research Group. https://web.calce.umd.edu/batteries/data.htm. |
| [19] | 宋禹霆, 周俊. 基于动态广义相关熵优化AEKF的锂电池SOC估计[J/OL]. 电源学报, 2025: 1-12. (2025-03-14). https://kns.cnki.net/KCMS/ detail/detail.aspx?filename=DYXB20250313002&dbname=CJFD&dbcode=CJFQ. |
| SONG Y T, ZHOU J. Lithium battery SOC estimation based on AEKF optimized by dynamic generalized correntropy[J/OL]. Journal of Power Supply, 2025: 1-12. (2025-03-14). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=DYXB20250313002&dbname=CJFD&dbcode=CJFQ. | |
| [20] | WU C L, HU W B, MENG J H, et al. State-of-charge estimation of lithium-ion batteries based on MCC-AEKF in non-Gaussian noise environment[J]. Energy, 2023, 274: 127316. DOI: 10.1016/j.energy.2023.127316. |
| [21] | WANG G Q, LI N, ZHANG Y G. Maximum correntropy unscented Kalman and information filters for non-Gaussian measurement noise[J]. Journal of the Franklin Institute, 2017, 354(18): 8659-8677. DOI: 10.1016/j.jfranklin.2017.10.023. |
| [1] | Huanzheng SHAO. Joint evaluation method for SOC and SOH of lithium batteries based on big data and deep learning [J]. Energy Storage Science and Technology, 2025, 14(9): 3564-3566. |
| [2] | Haoyuan MA, Yan WU, Tong WANG, Jinyang HU, Jia LI, Yuqi HUANG. State of charge estimation of lithium iron phosphate batteries based on force-electric-temperature signals and a CNN-BiLSTM model [J]. Energy Storage Science and Technology, 2025, 14(7): 2865-2874. |
| [3] | Jinzhen PING, Qinrun WEN. Surface defect detection of lithium battery based on electronic image processing technology [J]. Energy Storage Science and Technology, 2025, 14(6): 2512-2514. |
| [4] | Zhiqiang LI, Yichun BA, Guangqiang SUN. Research on heat dissipation of cold plates with honeycomb and fork channels of lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1776-1783. |
| [5] | Wei FENG. Research progress on the failure mechanism and recycling of waste lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1928-1930. |
| [6] | Shunxin LIU, Lingping XU, Jianxing ZHANG, Guang ZENG, Haoyang LI. Numerical analysis of temperature rise characteristics of lithium battery based on dual-channel parallel series liquid cooling plate [J]. Energy Storage Science and Technology, 2025, 14(4): 1496-1506. |
| [7] | Deqing ZHOU, Yijia CAI, Ziqin ZHANG, Liping ZHOU, Sijiang HU, Youguo HUANG, Hongqiang WANG, Qingyu LI. Electrochemical properties of spinel MoS2 coated lithium-rich manganese-based cathode materials [J]. Energy Storage Science and Technology, 2025, 14(3): 1087-1096. |
| [8] | Jiawei LI, Zhen LIU. Numerical simulation and performance analysis of a wet cooling system for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 717-727. |
| [9] | Junyu JIAO, Quanquan ZHANG, Ningbo CHEN, Jiyu WANG, Qiudi LU, Haohao DING, Peng PENG, Xiaohe SONG, Fan ZHANG, Jiaxin ZHENG. Development and applications of an intelligent big data analysis platform for batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 3198-3213. |
| [10] | Kaiyue YANG, Xinbing XIE, Xiaozhong DU. Exploration of lithium battery electrode calendering process based on discrete element method [J]. Energy Storage Science and Technology, 2024, 13(8): 2570-2579. |
| [11] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
| [12] | Yinan HE, Kai ZHANG, Junwu ZHOU, Xinyang WANG, Bailin ZHENG. Influence of external loads on the cycling performance of silicon anode lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2559-2569. |
| [13] | Hong ZHOU, Zhulin XIN, Hao FU, Qiang ZHANG, Feng WEI. Analysis of the key materials employed in solid-state lithium batteries based on patent data mining [J]. Energy Storage Science and Technology, 2024, 13(7): 2386-2398. |
| [14] | Sen JIANG, Long CHEN, Chuangchao SUN, Jinze WANG, Ruhong LI, Xiulin FAN. Low-temperature lithium battery electrolytes: Progress and perspectives [J]. Energy Storage Science and Technology, 2024, 13(7): 2270-2285. |
| [15] | Yuhao WANG, Zhiyong LI, Xin GUO. Applications and challenges of polymer-based electrolytes in low-temperature solid-state lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2243-2258. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||