Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (6): 2515-2523.doi: 10.19799/j.cnki.2095-4239.2024.1227
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Jinzhu ZHANG(), Lingran MENG(
), Yuting WU, Tianqing SHI, Yongqiang SHANG, Ruiping ZHI, Wenzhen WEI
Received:
2024-12-26
Revised:
2025-01-04
Online:
2025-06-28
Published:
2025-06-27
Contact:
Lingran MENG
E-mail:Zhang-jz@chec.com.cn;zxz13303342429@163.com
CLC Number:
Jinzhu ZHANG, Lingran MENG, Yuting WU, Tianqing SHI, Yongqiang SHANG, Ruiping ZHI, Wenzhen WEI. Phase diagram analysis of binary and ternary salts of lithium, sodium and potassium nitroxides[J]. Energy Storage Science and Technology, 2025, 14(6): 2515-2523.
1 | PALACIOS A, BARRENECHE C, NAVARRO M E, et al. Thermal energy storage technologies for concentrated solar power–A review from a materials perspective[J]. Renewable Energy, 2020, 156: 1244-1265. DOI: 10.1016/j.renene.2019.10.127. |
2 | 喻潇, 蒋东荣, 肖昊, 等. 计及动态氢价的综合能源系统低碳经济调度[J]. 重庆理工大学学报(自然科学), 2024, 38(12): 197-206. |
YU X, JIANG D R, XIAO H, et al. Low-carbon economic dispatch of integrated energy system taking into account dynamic hydrogen price[J]. Journal of Chongqing University of Technology (Natural Science), 2024, 38(12): 197-206. | |
3 | 陈东明. 管壳式蓄热器与复合相变材料的强化传热特性研究[D]. 青岛: 青岛科技大学, 2022. DOI: 10.27264/d.cnki.gqdhc.2022.000931. |
CHEN D M. Study on the enhanced heat transfer characteristics of shell-and-tube latent heat exchanger and composite phase change material[D]. Qingdao: Qingdao University of Science & Technology, 2022. DOI: 10.27264/d.cnki.gqdhc.2022.000931. | |
4 | WANG T, MANTHA D, REDDY R G. Novel low melting point quaternary eutectic system for solar thermal energy storage[J]. Applied Energy, 2013, 102: 1422-1429. DOI: 10.1016/j.apenergy. 2012.09.001. |
5 | 贾笃雨, 田丽亭, 闵春华, 等. 壁面下方圆管加热熔盐自然对流换热的数值研究[J]. 中国科技论文, 2017, 12(23): 2737-2741. DOI: 10.3969/j.issn.2095-2783.2017.23.017. |
JIA D Y, TIAN L T, MIN C H, et al. Numerical study on natural convection heat transfer of molten salt aroundcirculartubeunder upper-wall[J]. China Sciencepaper, 2017, 12(23): 2737-2741. DOI: 10.3969/j.issn.2095-2783.2017.23.017. | |
6 | 张静如, 韦安柱. 熔盐在太阳能热发电中的应用与发展前景[J]. 石油商技, 2017, 35(2): 16-21. DOI: 10.3969/j.issn.1006-1479.2017.02.003. |
ZHANG J R, WEI A Z. Application and development prospect of molten salt in solar thermal power generation[J]. Petroleum Products Application Research, 2017, 35(2): 16-21. DOI: 10.3969/j.issn.1006-1479.2017.02.003. | |
7 | FENG J H, MAO L, YUAN G C, et al. Grain size effect on corrosion behavior of Inconel 625 film against molten MgCl2-NaCl-KCl salt[J]. Corrosion Science, 2022, 197: 110097. DOI: 10.1016/j.corsci.2022.110097. |
8 | YU Q, ZHANG C C, LU Y W, et al. Comprehensive performance of composite phase change materials based on eutectic chloride with SiO2 nanoparticles and expanded graphite for thermal energy storage system[J]. Renewable Energy, 2021, 172: 1120-1132. DOI: 10.1016/j.renene.2021.03.061. |
9 | 王元聪, 桑丽霞. 基于相图低成本高温混合熔盐的配制及其热物性[J]. 工程热物理学报, 2023, 44(7): 1768-1773. |
WANG Y C, SANG L X. Preparation of low-cost and high-temperature mixed molten salts based on phase diagram and their thermophysical property[J]. Journal of Engineering Thermophysics, 2023, 44(7): 1768-1773. | |
10 | 何聪, 鹿院卫, 宋文兵, 等. 新型相同钠离子混合熔盐相图预测及物性测量[J]. 储能科学与技术, 2021, 10(5): 1729-1734. DOI: 10.19799/j.cnki.2095-4239.2021.0320. |
HE C, LU Y W, SONG W B, et al. The phase diagram prediction and experimental study of ternary same cation systems[J]. Energy Storage Science and Technology, 2021, 10(5): 1729-1734. DOI: 10.19799/j.cnki.2095-4239.2021.0320. | |
11 | 王元媛, 鹿院卫, 樊占胜, 等. KNO3-NaNO2-KNO2三元系相图筛选及物性测试[J]. 太阳能学报, 2024, 45(9): 662-667. DOI: 10.19912/j.0254-0096.tynxb.2023-0782. |
WANG Y Y, LU Y W, FAN Z S, et al. Phase diagram screening and physical property testing of KNO3-NaNO2-KNO2 ternary system[J]. Acta Energiae Solaris Sinica, 2024, 45(9): 662-667. DOI: 10.19912/j.0254-0096.tynxb.2023-0782. | |
12 | 来兴. 高潜热NaNO3-NaCl-NaF熔盐的传蓄热特性研究[D]. 西宁: 青海大学, 2022. DOI: 10.27740/d.cnki.gqhdx.2022.000282. |
LAI X. Heat transfer and storage characteristics of high latent heat NaNO3-NaCl-NaF molten salts[D]. Xining: Qinghai University, 2022. DOI: 10.27740/d.cnki.gqhdx.2022.000282. | |
13 | 曹战民, 宋晓艳, 乔芝郁. 热力学模拟计算软件FactSage及其应用[J]. 稀有金属, 2008, 32(2): 216-219. DOI: 10.13373/j.cnki.cjrm.2008.02.026. |
CAO Z M, SONG X Y, QIAO Z Y. Thermodynamic modeling software FactSage and its application[J]. Chinese Journal of Rare Metals, 2008, 32(2): 216-219. DOI: 10.13373/j.cnki.cjrm. 2008.02.026. | |
14 | 陈芳. 离子液体的团簇结构对其混合体系性质影响的理论与模拟研究[D]. 北京: 北京化工大学, 2022. DOI: 10.26939/d.cnki.gbhgu. 2022.002112. |
CHEN F. Theoretical and simulation studies of the cluster formation and its effect on the properties of mixed ionic liquid systems[D]. Beijing: Beijing University of Chemical Technology, 2022. DOI: 10.26939/d.cnki.gbhgu.2022.002112. | |
15 | RAJAGOPALAN R, TANG Y G, JI X B, et al. Advancements and challenges in potassium ion batteries: A comprehensive review[J]. Advanced Functional Materials, 2020, 30(12): 1909486. DOI: 10.1002/adfm.201909486. |
16 | 王立娟. 高温混合碳酸盐的热物性及腐蚀性实验研究[D]. 北京: 北京建筑大学, 2016. |
WANG L J. Experimental study on thermal physical properties and corrosion resistance of high temperature mixed carbonate[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2016. | |
17 | 张天福. 高温熔盐罐内熔化过程优化及控制研究[D]. 北京: 华北电力大学, 2021. DOI: 10.27140/d.cnki.ghbbu.2021.001365. |
ZHANG T F. Research on optimization and control of melting process in high temperature molten salt[D]. Beijing: North China Electric Power University, 2021. DOI: 10.27140/d.cnki.ghbbu. 2021.001365. | |
18 | 文龙. 硝酸熔盐储能传热材料的研究与进展[J]. 广州化工, 2017, 45(6): 22-23, 52. |
WEN L. Research progress and application on nitrate salt thermal storage and heat transfer media used for concentrating solar power[J]. Guangzhou Chemical Industry, 2017, 45(6): 22-23, 52. | |
19 | ZHANG T Y, ZHANG Z H, ARNOLD M A. Polarizability of aspirin at terahertz frequencies using terahertz time domain spectroscopy (THz-TDS)[J]. Applied Spectroscopy, 2019, 73(3): 253-260. DOI: 10.1177/0003702818815177. |
[1] | Xinlong HAN, Yuanwei LU, Yancheng MA, Yuting WU, Cancan ZHANG. Research on the dynamic corrosion characteristics of ternary nitrocarbonate acid mixed molten salt at high decomposition temperatures [J]. Energy Storage Science and Technology, 2025, 14(4): 1386-1393. |
[2] | Boxu YU, Rui HAN, Qian LIU, Zhirong LIAO, Xing JU, Chao XU. Thermodynamic performance of a flexible retrofit Carnot battery energy storage system in a coupled thermal power plant [J]. Energy Storage Science and Technology, 2025, 14(4): 1461-1470. |
[3] | Rongyu XU, Haitao LU, Hedu GUO, Zhanyun TANG, Qi LI, Yuting WU. Form-stable quaternary nitrate salt-based composite phase change material with low melting temperature for low-medium-temperature thermal energy storage [J]. Energy Storage Science and Technology, 2024, 13(5): 1451-1459. |
[4] | Heqing TIAN, Yiming GAO, Junjie ZHOU. Numerical simulation on the melting process of binary chloride salt nanofluids in a square cavity [J]. Energy Storage Science and Technology, 2024, 13(3): 1030-1035. |
[5] | Chao YU, Gechuanqi PAN. Molecular dynamics study on structure and thermal properties of high-performance chloride molten salt [J]. Energy Storage Science and Technology, 2024, 13(12): 4368-4380. |
[6] | Dalin WEI, Lin ZHU, Xiang LING, Feng JIANG. Research progress of MgCl2-NaCl-KCl molten salt for high-temperature heat storage [J]. Energy Storage Science and Technology, 2024, 13(12): 4421-4435. |
[7] | Qi ZHANG, Yinlei LI, Yanfang LI, Jun SONG, Xuehong WU, Chongyang LIU, Xueling ZHANG. Preparation and thermal characterization of expanded graphite/multiwalled carbon nanotube-based eutectic salt-composite phase change materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2435-2443. |
[8] | Heqing TIAN, Zhaoyang KOU, Junjie ZHOU, Yinsheng YU. Molecular dynamics simulation of structure and thermal properties of LiCl-KCl molten salt nanofluids [J]. Energy Storage Science and Technology, 2023, 12(3): 654-660. |
[9] | Rui HAN, Zhirong LIAO, Boxu YU, Chao XU, Xing JU. Simulation study of a molten-salt Carnot battery energy storage system for retrofitting a thermal power plant [J]. Energy Storage Science and Technology, 2023, 12(12): 3605-3615. |
[10] | Yunhan LIU, Liang WANG, Shuang ZHANG, Xipeng LIN, Zhiwei GE, Yakai BAI, Lin LIN, Haisheng CHEN. Thermal properties and thermal cycling stability of hydrated salt/expanded graphite composite phase change materials [J]. Energy Storage Science and Technology, 2023, 12(12): 3627-3634. |
[11] | Ziou YUAN, Feng WANG, Xingzhao QI, Qi ZHANG, Rui MA. Performance analysis of mixed sodium waste salts applied in a thermal storage field [J]. Energy Storage Science and Technology, 2023, 12(12): 3616-3626. |
[12] | Dianwei FU, Cancan ZHANG, Heya NA, Guoqiang WANG, Yuting WU, Yuanwei LU. Review of the molecular dynamics of molten salt thermal physical properties [J]. Energy Storage Science and Technology, 2023, 12(12): 3873-3882. |
[13] | Mingzhong WAN, Jinlong WANG, Yongan CHEN, Yuanwei LU, Yuting WU, Cancan ZHANG. Compatibility of low-temperature mixed nitrate and Q345R storage tank material [J]. Energy Storage Science and Technology, 2023, 12(10): 3099-3107. |
[14] | Liang WANG, Xin LIU, Changan WANG, Shengnian TIE. Preparation and thermal performance of nitrogen-doped porous carbon sponge-type mirabilite-based composite phase-change material [J]. Energy Storage Science and Technology, 2023, 12(1): 79-85. |
[15] | Baocun DU, Lijuan HUANG, Yonggang LEI, Chongfang SONG, Fei WANG. Dynamic study on the thermal and stress performances of the molten salt packed-bed thermal storage tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2141-2150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||