Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (9): 3259-3268.doi: 10.19799/j.cnki.2095-4239.2025.0225
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xiaoyu BAI(), Yajing YAN, Zhirong ZHANG, Lingli KONG
Received:
2025-03-07
Revised:
2025-03-28
Online:
2025-09-28
Published:
2025-09-05
Contact:
Xiaoyu BAI
E-mail:baixiaoyu@lishen.com.cn
CLC Number:
Xiaoyu BAI, Yajing YAN, Zhirong ZHANG, Lingli KONG. Research on the performance of composite graphite lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(9): 3259-3268.
[1] | AYERBE E, BERECIBAR M, CLARK S, et al. Digitalization of battery manufacturing: Current status, challenges, and opportunities[J]. Advanced Energy Materials, 2022, 12(17): 2102696. DOI: 10. 1002/aenm.202102696. |
[2] | LV C D, ZHOU X, ZHONG L X, et al. Machine learning: An advanced platform for materials development and state prediction in lithium-ion batteries[J]. Advanced Materials, 2022, 34(25): 2101474. DOI: 10.1002/adma.202101474. |
[3] | LIU Y Y, SHI H D, WU Z S. Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries[J]. Energy & Environmental Science, 2023, 16(11): 4834-4871. DOI: 10.1039/D3EE02213G. |
[4] | MAHMOOD N, TANG T Y, HOU Y L. Nanostructured anode materials for lithium ion batteries: Progress, challenge and perspective[J]. Advanced Energy Materials, 2016, 6(17): 1600374. DOI: 10.1002/aenm.201600374. |
[5] | ZHAO Y, FU Y L, MENG Y, et al. Challenges and strategies of lithium-ion mass transfer in natural graphite anode[J]. Chemical Engineering Journal, 2024, 480: 148047. DOI: 10.1016/j.cej. 2023.148047. |
[6] | SON Y, LEE T, WEN B, et al. High energy density anodes using hybrid Li intercalation and plating mechanisms on natural graphite[J]. Energy & Environmental Science, 2020, 13(10): 3723-3731. DOI: 10.1039/D0EE02230F. |
[7] | KIM M, KIM I, KIM J, et al. Lifetime prediction of lithium ion batteries by using the heterogeneity of graphite anodes[J]. ACS Energy Letters, 2023, 8(7): 2946-2953. DOI: 10.1021/acsenergylett. 3c00695. |
[8] | YEO G, SUNG J, CHOI M, et al. Dendrite-free lithium deposition on conventional graphite anode by growth of defective carbon-nanotube for lithium-metal/ion hybrid batteries[J]. Journal of Materials Chemistry A, 2022, 10(24): 12938-12945. DOI: 10.1039/D2TA01907H. |
[9] | 肖鹏飞, 梅琳, 陈立宝. 多元包覆石墨复合负极材料的低温电化学储锂性能研究[J]. 储能科学与技术, 2024, 13(7): 2116-2123. DOI: 10.19799/j.cnki.2095-4239.2024.0408. |
XIAO P F, MEI L, CHEN L B. Multicomponent-coated graphite composite anodes for low-temperature electrochemical energy storage[J]. Energy Storage Science and Technology, 2024, 13(7): 2116-2123. DOI: 10.19799/j.cnki.2095-4239.2024.0408. | |
[10] | HOSHI K, OHTA N, NAGAOKA K, et al. Production and advantages of carbon-coated graphite for the anode of lithium ion rechargeable batteries[J]. Carbon, 2010, 48(4): 1322. DOI: 10. 1016/j.carbon.2009.11.003. |
[11] | 廖雅贇, 周峰, 张颖曦, 等. 锂离子电池快充石墨负极材料研究进展[J]. 储能科学与技术, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki. 2095-4239.2023.0777. |
LIAO Y Y, ZHOU F, ZHANG Y X, et al. Research progress on fast-charging graphite anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki.2095-4239.2023.0777. | |
[12] | LIU T C, LIN L P, BI X X, et al. In situ quantification of interphasial chemistry in Li-ion battery[J]. Nature Nanotechnology, 2018, 14(1): 50-56. DOI: 10.1038/s41565-018-0284-y. |
[13] | TANG Z M, XU L, XIE C, et al. Synthesis of CuCo2S4@Expanded Graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption[J]. Nature Communications, 2023, 14: 5951. DOI: 10.1038/s41467-023-41697-6. |
[14] | XU R H, LI X H, TANG S Q, et al. Quantitative failure analysis of lithium-ion batteries based on direct current internal resistance decomposition model[J]. Applied Energy, 2024, 371: 123630. DOI: 10.1016/j.apenergy.2024.123630. |
[15] | HAN B, ZOU Y C, XU G Y, et al. Additive stabilization of SEI on graphite observed using cryo-electron microscopy[J]. Energy & Environmental Science, 2021, 14(9): 4882-4889. DOI: 10.1039/D1EE01678D. |
[16] | 王灿, 马盼, 祝国梁, 等. 丙烯酸锂包覆天然石墨对其电化学性能的影响[J]. 储能科学与技术, 2022, 11(6): 1706-1714. DOI: 10.19799/j.cnki.2095-4239.2021.0556. |
WANG C, MA P, ZHU G L, et al. Effect of lithium acrylic-coated nature graphite on its electrochemical properties[J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. DOI: 10.19799/j.cnki.2095-4239.2021.0556. | |
[17] | QIN L, XIAO N, ZHENG J F, et al. Localized high-concentration electrolytes boost potassium storage in high-loading graphite[J]. Advanced Energy Materials, 2019, 9(44): 1902618. DOI: 10.1002/aenm.201902618. |
[18] | ADENUSI H, CHASS G A, PASSERINI S, et al. Lithium batteries and the solid electrolyte interphase (SEI)—Progress and outlook[J]. Advanced Energy Materials, 2023, 13(10): 2203307. DOI: 10.1002/aenm.202203307. |
[19] | GU M Y, RAO A M, ZHOU J, et al. In situ formed uniform and elastic SEI for high-performance batteries[J]. Energy & Environmental Science, 2023, 16(3): 1166-1175. DOI: 10.1039/D2EE04148K. |
[20] | LIU Y H, YANG S, GUO H R, et al. Low LUMO energy carbon molecular interface to suppress electrolyte decomposition for fast charging natural graphite anode[J]. Energy Storage Materials, 2024, 73: 103806. DOI: 10.1016/j.ensm.2024.103806. |
[21] | WANG C, XING L D, VATAMANU J, et al. Overlooked electrolyte destabilization by manganese (II) in lithium-ion batteries[J]. Nature Communications, 2019, 10: 3423. DOI: 10.1038/s41467-019-11439-8. |
[22] | CHEN W B, WANG K, LI Y L, et al. Minimize the electrode concentration polarization for high-power lithium batteries[J]. Advanced Functional Materials, 2024, 34(52): 2410926. DOI: 10.1002/adfm.202410926. |
[23] | LI G X. Regulating mass transport behavior for high-performance lithium metal batteries and fast-charging lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(7): 2002891. DOI: 10.1002/aenm.202002891. |
[24] | ZHENG J X, LU J, AMINE K, et al. Depolarization effect to enhance the performance of lithium ions batteries[J]. Nano Energy, 2017, 33: 497-507. DOI: 10.1016/j.nanoen.2017.02.011. |
[25] | PENG J, TAN H D, WU Z Y, et al. Improving natural microcrystalline graphite performances by a dual modification strategy toward practical application of lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(51): 59552-59560. DOI: 10.1021/acsami.3c15484. |
[26] | WANG L F, ZHAO Y H, SUN J Y, et al. Artificially regulated interphase on natural graphite realizes rapid charge and durable high-temperature cycling of Li-ion batteries[J]. Carbon, 2024, 230: 119656. DOI: 10.1016/j.carbon.2024.119656. |
[1] | Xiuwen TAN, Ling LI. Study on the thermal runaway characteristics of lithium-ion batteries and their thermal management under local overheating conditions [J]. Energy Storage Science and Technology, 2025, 14(9): 3521-3529. |
[2] | Wenyan CHEN, Ruilin HE, Jian CHANG, Yonghong DENG. Investigation of lithium storage mechanisms in liquid metal electrodes with different morphologies [J]. Energy Storage Science and Technology, 2025, 14(9): 3290-3300. |
[3] | Yan ZHAO, Hao LIU, Zonglin YI, Li LI, Lijing XIE, Fangyuan SU. Interfacial behavior of FEC and VC at graphite anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3249-3258. |
[4] | Jijin LIN, Qian LIU, Tao QU, Jingkun LI, Dongyong HUANG, Xiaoqing ZHU, Xing JU. Technical and economic analysis of liquid immersion cooling for lithium-ion battery energy storage system [J]. Energy Storage Science and Technology, 2025, 14(9): 3622-3635. |
[5] | Juqiang FENG, Chengzhi ZHANG, Yuhang CHEN. A high-precision SOC and temperature joint estimation method based on rapid prototype modeling [J]. Energy Storage Science and Technology, 2025, 14(9): 3567-3580. |
[6] | Zijun BIN, Xiangping KONG, Yunhui HUANG, Jixiang WANG, Beibei QI, Hao JIANG. Modeling and stability analysis of grid-forming energy storage converter connected to AC power grid [J]. Energy Storage Science and Technology, 2025, 14(9): 3434-3443. |
[7] | Lei ZHANG. Operating status monitoring and evaluation of lithium-ion battery energy storage power stations [J]. Energy Storage Science and Technology, 2025, 14(9): 3538-3540. |
[8] | Xinyu BAO, Xiangdong KONG, Taolin LV, Zhicheng ZHU, Xuebing HAN, Xin LAI, Yuejiu ZHENG, Tao SUN. Battery internal resistance prediction and rapid sorting method based on production line big data [J]. Energy Storage Science and Technology, 2025, 14(9): 3541-3551. |
[9] | Yafeng FAN, Zonglin YI, Lijing XIE, Xiaoming LI, Fangyuan SU. Capacitor composition analysis of high-frequency supercapacitors based on first-order RC model [J]. Energy Storage Science and Technology, 2025, 14(8): 2903-2912. |
[10] | Chengshan XU, Ye SUN, Zhikai YANG, Mingqiang ZHAO, Yalun LI, Xuning FENG, Hewu WANG, Languang LU, Minggao OUYANG. Research progress on arc induced by thermal runaway in lithium-ion battery systems for energy storage [J]. Energy Storage Science and Technology, 2025, 14(8): 3037-3050. |
[11] | Pengju LI, Xiaoyu CHEN, Jia XIE, Jiani SHEN, Yijun HE. Research progress on state of power prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(8): 3028-3036. |
[12] | Gongqiang LI, Lulu ZHAO, Fengxiang XIE, Yongdong JI, Jingjia LIU, Yanqiao CHEN, Yi JIN. Disturbance-free switching control technology for energy storage converters between grid-following and grid-forming modes [J]. Energy Storage Science and Technology, 2025, 14(8): 2983-2993. |
[13] | Liyue HU, Wei HUANG, Yun ZHOU, Yingqiang ZHOU, Changzheng SHAO, Ke WANG. Fuzzy reasoning-based evaluation of the thermal diffusion probability of lithium-ion battery modules for energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(7): 2662-2674. |
[14] | Feng XIONG, Depeng KONG, Ping PING, Yue ZHANG, Xiantong REN, Yao LV. Study on the characteristics of electrothermal coupling-induced thermal runaway of ternary lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(7): 2752-2760. |
[15] | Wenyuan WENG, Bin SHEN, Jiangong ZHU, Yang WANG, Huapeng LU, Wuliyasu HE, Haonan LIU, Haifeng DAI, Xuezhe WEI. Detecting hazardous lithium plating on anodes of lithium-ion batteries—A review of in situ methods [J]. Energy Storage Science and Technology, 2025, 14(7): 2575-2589. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||