Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (9): 3488-3499.doi: 10.19799/j.cnki.2095-4239.2025.0166
• Energy Storage System and Engineering • Previous Articles Next Articles
Yanlin ZHENG1,2,3,4(), Huan GUO1,2,4(
), Zhao YIN1,2,4, Yujie XU1,2,4, Hualiang ZHANG1,2,4, Haisheng CHEN1,2,4(
)
Received:
2025-02-20
Revised:
2025-03-11
Online:
2025-09-28
Published:
2025-09-05
Contact:
Huan GUO, Haisheng CHEN
E-mail:zhengyanlin@iet.cn;guohuan@iet.cn;chen_hs@mail.etp.ac.cn
CLC Number:
Yanlin ZHENG, Huan GUO, Zhao YIN, Yujie XU, Hualiang ZHANG, Haisheng CHEN. Variable-load operating characteristics of heat and power cogeneration system based on micro compressed air energy storage[J]. Energy Storage Science and Technology, 2025, 14(9): 3488-3499.
Table 1
Designed basic parameters of Micro CAES system"
参数 | 值 | 参数 | 值 |
---|---|---|---|
压缩机压比 | 3.5 | 电动机容量/kW | 75 |
压缩机级数 | 4 | 发电机容量/kW | 60 |
膨胀机膨胀比 | 4.5 | 首级压缩机入口温度/K | 293 |
膨胀机级数 | 3 | 其余压缩机入口温度/K | 318.15 |
压缩机等熵效率 | 0.83 | 首级压缩机出口温度/K | 474.2 |
膨胀机等熵效率 | 0.8743 | 其余压缩机出口温度/K | 484 |
压缩段流量(kg/s) | 0.115 | 高温蓄热温度/K | 453 |
膨胀段流量/(kg/s) | 0.148 | 低温蓄热温度/K | 293 |
每级压缩机功率/kW | 18.75 | 膨胀机入口温度/K | 443 |
每级膨胀机功率/kW | 20 | 膨胀机出口温度/K | 308 |
中冷器流量/(kg/s) | 0.0529 | 储气室体积/m3 | 65.55 |
再热器流量/(kg/s) | 0.0681 | 储气室表面积/m2 | 56.55 |
Fig. 6
(a) Compressor power and intercooling power change curves, (b) effectiveness curves of intercoolers at all stages, (c) temperature change curves of the inlets of each stage, (d) change curves of each stage outlet temperature, (e) change curves of compressor pressure ratio at all stages, (f) change curves of compression exergy efficiency and each stage isentropy efficiency, (g) change curve of speed"
[1] | 任丽彬,许寒,宗军,等. 大规模储能技术及应用的研究进展[J]. 电源技术, 2018, 42(1): 139-42. |
REN L, XU H, ZONG J, et al. Research progress of large-scale energy storage technologies and applications [J]. Chinese Journal of Power Sources, 2018, 42(1): 139-42. | |
[2] | 薛皓白, 张新敬, 陈海生, 等. 微型压缩空气储能系统释能过程分析[J]. 工程热物理学报, 2014, 35(10): 1923-1929. |
XUE H B, ZHANG X J, CHEN H S, et al. Analysis of energy release process of micro-compressed air energy storage systems[J]. Journal of Engineering Thermophysics, 2014, 35(10): 1923-1929. | |
[3] | 李连生, 杨启超, 赵远扬. 微小型压缩空气储能系统研究[J]. 流体机械, 2014, 42(3): 24-27. DOI: 10.3969/j.issn.1005-0329.2014. 03.006. |
LI L S, YANG Q C, ZHAO Y Y. Research on micro-small scale of compressed air energy storage system[J]. Fluid Machinery, 2014, 42(3): 24-27. DOI: 10.3969/j.issn.1005-0329.2014.03.006. | |
[4] | CHEN L J, ZHENG T W, MEI S W, et al. Review and prospect of compressed air energy storage system[J]. Journal of Modern Power Systems and Clean Energy, 2016, 4(4): 529-541. DOI: 10.1007/s40565-016-0240-5. |
[5] | BAZDAR E, SAMETI M, NASIRI F, et al. Compressed air energy storage in integrated energy systems: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112701. DOI: 10. 1016/j.rser.2022.112701. |
[6] | BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268. DOI: 10. 1016/j.apenergy.2016.02.108. |
[7] | MOTTAGHIZADEH P, FARDADI M, JABBARI F, et al. Thermodynamic and dynamic analysis off a wind-powered off-grid industrial building integrated with solid oxide fuel cell and electrolyzer for energy management and storage[J]. Journal of Electrochemical Energy Conversion and Storage. 2021, DOI:10.1115/1.4052856. |
[8] | TAYEFEH M. An innovative rearrangement and comprehensive comparison of the combination of compressed air energy storage (CAES) with multi stage flash (MSF) desalination and multi effect distillation (MED) systems[J]. Journal of Energy Storage, 2022, 52: 105025. DOI: 10.1016/j.est.2022.105025. |
[9] | JANNELLI E, MINUTILLO M, LUBRANO LAVADERA A, et al. A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology[J]. Energy, 2014, 78: 313-322. DOI: 10.1016/j.energy.2014.10.016. |
[10] | YAO E R, WANG H R, WANG L G, et al. Thermo-economic optimization of a combined cooling, heating and power system based on small-scale compressed air energy storage[J]. Energy Conversion and Management, 2016, 118: 377-386. DOI: 10.1016/j.enconman.2016.03.087. |
[11] | 郭欢,徐玉杰,张新敬,等. 蓄热式压缩空气储能系统变工况特性 [J]. 中国电机工程学报, 2019, 39(5): 1366-1377. |
GUO H, XU Y, ZHANG X, et al. Off-design Performance of compressed air energy storage system with thermal storage [J]. Proceedings of the CSEE, 2019, 39(5): 1366-1377. | |
[12] | 刘扬波, 陈俊生, 李全皎, 等. 海上风电水下压缩空气储能系统运行及变工况分析[J]. 南方电网技术, 2022, 16(4): 50-59. DOI: 10.13648/j. cnki.issn1674-0629.2022.04.006. |
LIU Y B, CHEN J S, LI Q J, et al. Operation and varying load analysis of offshore wind-underwater compressed air energy storage system[J]. Southern Power System Technology, 2022, 16(4): 50-59. DOI: 10.13648/j.cnki.issn1674-0629.2022.04.006. | |
[13] | 陈辉, 李文, 盛勇, 等. CAES释能过程多工况动态仿真及效率分析 [J]. 动力工程学报, 2023, 43(7): 869-876+92. |
CHEN H, LI W, SHENG Y, et al. Dynamic simulation and efficiency analysis of energy release process in compressed air energy storage under multi conditions [J]. Journal of Chinese Society of Power Engineering, 2023, 43(7): 869-876+92 | |
[14] | LI P, YANG C, SUN L, et al. Dynamic characteristics and operation strategy of the discharge process in compressed air energy storage systems for applications in power systems[J]. International Journal of Energy Research, 2020, 44(8): 6363-6382. DOI: 10.1002/er.5362. |
[15] | LI Y W, MIAO S H, LUO X, et al. Dynamic modelling and techno-economic analysis of adiabatic compressed air energy storage for emergency back-up power in supporting microgrid[J]. Applied Energy, 2020, 261: 114448. DOI: 10.1016/j.apenergy.2019.114448. |
[16] | SALVINI C, MARIOTTI P, GIOVANNELLI A. Compression and air storage systems for small size CAES plants: Design and off-design analysis[J]. Energy Procedia, 2017, 107: 369-376. DOI: 10.1016/j.egypro.2016.12.178. |
[17] | SUBRAMANIYAN C, KALIDASAN B, BHUVANESH N, et al. Second law analysis on performance of double stage reciprocating air compressor with inter cooler[J]. Materials Today: Proceedings, 2021, 45: 652-657. DOI: 10.1016/j.matpr.2020.02.727. |
[18] | HEIDARI M, MORTAZAVI M, RUFER A. Design, modeling and experimental validation of a novel finned reciprocating compressor for Isothermal Compressed Air Energy Storage applications[J]. Energy, 2017, 140: 1252-1266. DOI: 10.1016/j.energy.2017.09.031. |
[19] | KIM S K, PILIDIS P, YIN J F. Gas turbine dynamic simulation using simulink®[C]//SAE Technical Paper Series. SAE International, 2000, DOI: 10.4271/2000-01-3647. |
[20] | MUCCI S, BISCHI A, BRIOLA S, et al. Small-scale adiabatic compressed air energy storage: Control strategy analysis via dynamic modelling[J]. Energy Conversion and Management, 2021, 243: 114358. DOI: 10.1016/j.enconman.2021.114358. |
[21] | HERNANDEZ-CARRILLO I, WOOD C, LIU H. Development of a 1000 W organic Rankine cycle micro-turbine-generator using polymeric structural materials and its performance test with compressed air[J]. Energy Conversion and Management, 2019, 190: 105-120. DOI: 10.1016/j.enconman.2019.03.092. |
[22] | DAABO A M, MAHMOUD S, AL-DADAH R K, et al. Numerical analysis of small scale axial and radial turbines for solar powered Brayton cycle application[J]. Applied Thermal Engineering, 2017, 120: 672-693. DOI: 10.1016/j.applthermaleng.2017.03.125. |
[23] | RAHBAR K, MAHMOUD S, AL-DADAH R K, et al. Development and experimental study of a small-scale compressed air radial inflow turbine for distributed power generation[J]. Applied Thermal Engineering, 2017, 116: 549-583. DOI: 10.1016/j.applthermaleng. 2017.01.100. |
[24] | GAUDET S R, DONALD GAUTHIER J E. A simple sub-idle component map extrapolation method[C]//Volume 1: Turbo Expo 2007. May 14-17, 2007. Montreal, Canada. ASMEDC, 2007: 29-37. DOI: 10.1115/gt2007-27193. |
[25] | DIB G, HABERSCHILL P, RULLIèRE R, et al. Thermodynamic simulation of a micro advanced adiabatic compressed air energy storage for building application [J]. Applied Energy, 2020, 260 |
[26] | GUO H, XU Y J, ZHU Y L, et al. Unsteady characteristics of compressed air energy storage systems with thermal storage from thermodynamic perspective[J]. Energy, 2022, 244: 122969. DOI: 10.1016/j.energy.2021.122969. |
[27] | 韩晓光, 曲文浩, 董瑜, 等. 基于Simulink的燃气轮机动态仿真模型[J]. 航空发动机, 2010, 36(3): 20-22, 25. DOI: 10.3969/j.issn.1672-3147.2010.03.005. |
HAN X G, QU W H, DONG Y, et al. Dynamic simulation model of gas turbine based on Simulink[J]. Aeroengine, 2010, 36(3): 20-22, 25. DOI: 10.3969/j.issn.1672-3147.2010.03.005. | |
[28] | CASTELLANI B, MORINI E, NASTASI B, et al. Small-scale compressed air energy storage application for renewable energy integration in a listed building[J]. Energies, 2018, 11(7): 1921. DOI: 10.3390/en11071921. |
[29] | HUANG J J, XU Y J, GUO H, et al. Dynamic performance and control scheme of variable-speed compressed air energy storage[J]. Applied Energy, 2022, 325: 119338. DOI: 10.1016/j.apenergy. 2022.119338. |
[1] | Chuanqi XIN, Wenquan WANG, Wei CHEN, Lianwu ZHOU, Jiqin LIU, Kai XIE, Jinbiao AN, Tao MA, Haotian XIONG. Multi-dimensional application and development paths of compressed air energy storage technology [J]. Energy Storage Science and Technology, 2025, 14(9): 3636-3647. |
[2] | Feng ZHAO, Mingcheng YANG, Ning HAO, Dong CHEN, Chuanliang LIU, Yilun CHEN. Research and simulation implementation of turbine load control strategies in compressed air energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(9): 3500-3508. |
[3] | Juan SONG. Application of flywheel energy storage control technology in new energy wind power generation systems [J]. Energy Storage Science and Technology, 2025, 14(9): 3431-3433. |
[4] | Zheng ZHOU. Real time monitoring of electricity consumption information and collaborative control of distributed energy storage systems in smart grids [J]. Energy Storage Science and Technology, 2025, 14(9): 3619-3621. |
[5] | Xiaolan WU, Yongzhi YANG, Zhifeng BAI, Haichang GUO, Guifang GUO, Jinhua ZHANG. SOC-balancing droop control strategy using secondary voltage compensation for distributed energy storage units in islanded DC microgrids [J]. Energy Storage Science and Technology, 2025, 14(8): 3160-3169. |
[6] | Qian MA, Liang XIAO, Bing CHENG, Qin GAO, Chunxiao LIU, Yihua ZHU, Chengxiang LI. Cooperative primary frequency modulation control method for distributed energy storage based on reinforcement learning-model predictive control [J]. Energy Storage Science and Technology, 2025, 14(8): 3138-3148. |
[7] | Heyong XU, Tiejun ZHENG, Shengquan DING, Fei MENG, Yue ZHANG, Jiaqi YANG. An adaptive frequency regulation method for hybrid energy storage systems based on quantum-enhanced hybrid spatiotemporal graph neural networks [J]. Energy Storage Science and Technology, 2025, 14(8): 3149-3159. |
[8] | Caiying XU, Yuzhen TANG, Qiuyu LI, Haoyue YANG, Yang CHEN, Hengzhao YANG. Supercapacitor energy storage systems for frequency regulation applications in power systems [J]. Energy Storage Science and Technology, 2025, 14(8): 3078-3089. |
[9] | Zitao WANG, Haoran LI. Frequency control method for power restoration in distribution networks considering distributed energy storage power support [J]. Energy Storage Science and Technology, 2025, 14(7): 2738-2751. |
[10] | Haoran LI, Zitao WANG. Active control method for power restoration in distribution networks considering the characteristics of distributed energy storage SOC [J]. Energy Storage Science and Technology, 2025, 14(7): 2833-2843. |
[11] | Hao ZHAN, Hao YU, Mengqi LENG, Jiashuo ZHOU, Yunfang QI, Ronghua WU. Optimization and empirical analysis of energy storage in heating networks under time-of-use electricity-price [J]. Energy Storage Science and Technology, 2025, 14(7): 2689-2697. |
[12] | Hong ZHANG, Jinzhong LI, Xin LI, Yuan ZHANG. Parallel control of vanadium flow battery considering state of health [J]. Energy Storage Science and Technology, 2025, 14(6): 2442-2450. |
[13] | Yinchi SHAO, Yu GONG, Meng NIU, Ruohuan YANG, Yating LIU, Ran DING. Grid-forming energy storage system taking phase angle and amplitude jumps into account short-circuit current characteristics and its calculation model [J]. Energy Storage Science and Technology, 2025, 14(6): 2451-2461. |
[14] | Chunjiang DAI, Wenye LIN, Shuaiqi LI, Xiang CHEN, Wenji SONG, Ziping FENG, Frédéric KUZNIK. NSGA-II optimization-assisted model predictive control strategy for electric vehicle thermal management systems [J]. Energy Storage Science and Technology, 2025, 14(6): 2200-2214. |
[15] | Junyang XIAO, Jinge LUO, Weizhe MA, Wuping CHENG, Tong ZENG. Energy storage optimization control strategy in distribution system based on improved artificial bee colony algorithm [J]. Energy Storage Science and Technology, 2025, 14(6): 2567-2574. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||