Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (9): 3509-3520.doi: 10.19799/j.cnki.2095-4239.2025.0107
• Energy Storage System and Engineering • Previous Articles Next Articles
Xiaopeng WANG1(), Xiuao ZHANG1, Hongxia ZHAO1(
), Qiuyan SUN2, Hao ZHANG1, Gongming XIN1, Chao BAI1(
)
Received:
2025-02-06
Revised:
2025-02-23
Online:
2025-09-28
Published:
2025-09-05
Contact:
Hongxia ZHAO, Chao BAI
E-mail:202314526@mail.sdu.edu.cn;hongxia.zhao@sdu.edu.cn;baichao@sdu.edu.cn
CLC Number:
Xiaopeng WANG, Xiuao ZHANG, Hongxia ZHAO, Qiuyan SUN, Hao ZHANG, Gongming XIN, Chao BAI. Thermodynamic analysis of a coupled energy storage system in a coal-fired power plant[J]. Energy Storage Science and Technology, 2025, 14(9): 3509-3520.
Table 4
Exergy calculation of components in the CCES system unit"
组件 | ĖxF,k | ĖxP,k | ĖxD,k |
---|---|---|---|
COMP1 | WCOMP1 | Ėx2-Ėx1 | ĖxF,COMP1-ĖxP,COMP1 |
COMP2 | WCOMP2 | Ėx4-Ėx3 | ĖxF,COMP2-ĖxP,COMP2 |
IC1 | Ėx3-Ėx2 | Ėxw2-Ėxw1 | ĖxF,IC1-ĖxP,IC1 |
IC2 | Ėx5-Ėx4 | Ėxw3-Ėxw1 | ĖxF,IC2-ĖxP,IC2 |
TURB1 | Ėx8-Ėx9 | WTURB1 | ĖxF,TURB1-ĖxP,TURB1 |
TURB2 | Ėx10-Ėx11 | WTURB2 | ĖxF,TURB2-ĖxP,TURB2 |
HE1 | Ėxm1-Ėxm2 | Ėxw5-Ėxw4 | ĖxF,HE1-ĖxP,HE1 |
HE2 | Ėxw10-Ėxw11 | Ėx11-Ėx10 | ĖxF,HE2-ĖxP,HE2 |
RH1 | Ėxw7-Ėxw8 | Ėx7-Ėx6 | ĖxF,RH1-ĖxP,RH1 |
RH2 | Ėxw7-Ėxw9 | Ėx9-Ėx8 | ĖxF,RH2-ĖxP,RH2 |
Table 5
Comparison between design value and simulation value of a 350 MW extraction steam turbine under THA condition"
工况 | 电负荷/MW | 汽轮机热耗/(kJ/kWh) | ||||
---|---|---|---|---|---|---|
计算值 | 参考设计值 | 相对误差/% | 计算值 | 参考设计值 | 相对误差/% | |
100% THA | 352.7 | 350 | 0.78 | 7771.7 | 7807.0 | -0.45 |
70% THA | 246.5 | 245 | 0.61 | 7905.1 | 7943.7 | -0.49 |
50% THA | 176.1 | 175 | 0.63 | 8298.7 | 8237.5 | 0.74 |
30% THA | 105.8 | 105 | 0.69 | 8973.4 | 8899.4 | 0.83 |
Table 7
CCES system unit model validation with open data[23]"
组分 | 项目 | 温度/K | 压力/kPa | ||||
---|---|---|---|---|---|---|---|
参考值 | 模型值 | 相对误差/% | 参考值 | 模型值 | 相对误差/% | ||
压缩机 | 进口 | 270.1 | 270.1 | 0.00 | 3216 | 3216 | 0.00 |
出口 | 431.4 | 431.4 | 0.00 | 20000 | 20000 | 0.00 | |
涡轮 | 进口 | 790.7 | 790.7 | 0.00 | 20000 | 20000 | 0.00 |
出口 | 616.9 | 616.9 | 0.00 | 3770 | 3770 | 0.00 | |
换热器 | 热流进口 | 616.9 | 616.9 | 0.00 | 3770 | 3770 | 0.00 |
热流出口 | 469.3 | 470.0 | 0.13 | 3770 | 3770 | 0.00 | |
冷流进口 | 431.4 | 431.4 | 0.00 | 20000 | 20000 | 0.00 | |
冷流出口 | 548.2 | 547.7 | -0.09 | 20000 | 20000 | 0.00 | |
系统 | RTE/% | 42.04 | 42.05 | 0.02 | |||
TEE/% | 60.23 | 60.22 | -0.02 | ||||
ESD/(kWh/m³) | 12.01 | 12.07 | 0.50 |
Table 9
Temperature and pressure at each state point under four different methods of CCES system unit"
状态点 | 工作 介质 | 基本方法温度/K | 方法1温度/K | 方法2温度/K | 方法3温度/K | 各方法 压力/kPa |
---|---|---|---|---|---|---|
1 | CO2 | 310.15 | 310.15 | 310.15 | 310.15 | 7500 |
2 | CO2 | 350.65 | 350.65 | 350.65 | 350.65 | 12990 |
3 | CO2 | 325.65 | 325.65 | 325.65 | 325.65 | 12730 |
4 | CO2 | 348.25 | 348.25 | 348.25 | 348.25 | 22050 |
5 | CO2 | 312.19 | 312.19 | 312.19 | 312.19 | 21609 |
6 | CO2 | 312.19 | 312.19 | 312.19 | 312.19 | 21609 |
7 | CO2 | 328.53 | 344.56 | 336.52 | 353.62 | 21177 |
8 | CO2 | 315.98 | 325.96 | 321.19 | 330.95 | 12864 |
9 | CO2 | 322.91 | 337.88 | 330.54 | 345.87 | 12607 |
10 | CO2 | 305.58 | 307.44 | 306.01 | 311.27 | 7658 |
11 | CO2 | 310.15 | 310.15 | 310.15 | 314.83 | 7500 |
12 | CO2 | 310.15 | 310.15 | 310.15 | 310.15 | 7500 |
w1 | 水 | 288.15 | 288.15 | 288.15 | 288.15 | 202 |
w2 | 水 | 342.14 | 342.14 | 342.14 | 342.14 | 198 |
w3 | 水 | 337.64 | 337.64 | 337.64 | 337.64 | 198 |
w4 | 水 | 339.89 | 339.89 | 339.89 | 339.89 | 198 |
w5 | 水 | 339.89 | 367.05 | 353.42 | 382.40 | 194(basic 198) |
w6 | 水 | 339.89 | 367.05 | 353.42 | 382.40 | 202 |
w7 | 水 | 339.89 | 367.05 | 353.42 | 382.40 | 202 |
w8 | 水 | 317.50 | 321.49 | 319.65 | 372.47 | 198 |
w9 | 水 | 323.56 | 334.43 | 328.05 | 372.47 | 198 |
w10 | 水 | 320.53 | 327.96 | 323.85 | 372.47 | 198 |
w11 | 水 | 294.64 | 320.23 | 307.45 | 371.21 | 194 |
w12 | 水 | 288.15 | 288.15 | 288.15 | 288.15 | 202 |
[1] | 张晓斐. 推动实现"双碳" 目标背景下若干问题的思考研究[J]. 能源与节能, 2022(4): 69-71. |
ZHANG X F. Thinking and research on several issues in context of promoting the realization of "dual carbon" goal[J]. Energy and Energy Conservation, 2022(4): 69-71. | |
[2] | WANG L H, CUI Z C, KUULUVAINEN J, et al. Does forest industries in China become cleaner?A prospective of embodied carbon emission[J]. Sustainability, 2021, 13(4): 2306. DOI: 10. 3390/su13042306. |
[3] | LYU Y Z, GAO H B, YAN K, et al. Carbon peaking strategies for industrial parks: Model development and applications in China[J]. Applied Energy, 2022, 322: 119442. DOI: 10.1016/j.apenergy. 2022.119442. |
[4] | 杨华磊, 杨敏. 碳达峰碳中和: 中国式现代化的能源转型之路[J]. 经济问题, 2024(3): 1-7. DOI: 10.16011/j.cnki.jjwt.2024.03.011. |
YANG H L, YANG M. Peak carbon emission and carbon neutrality: China's path to energy transition in modernization[J]. On Economic Problems, 2024(3): 1-7. DOI: 10.16011/j.cnki.jjwt. 2024. 03.011. | |
[5] | 龚向前. 迈向可持续能源——能源法生态化变革的法理分析[J]. 中国地质大学学报(社会科学版), 2009, 9(2): 31-36. DOI: 10.16493/j.cnki.42-1627/c.2009.02.007. |
GONG X Q. Studies on the jurisprudence of energy law reform towards sustainable energy[J]. Journal of China University of Geosciences (Social Sciences Edition), 2009, 9(2): 31-36. DOI: 10.16493/j.cnki.42-1627/c.2009.02.007. | |
[6] | 北京大学国家发展研究院能源安全与国家发展研究中心、中国人民大学经济学院能源经济系联合课题组, 王敏. 关于中国风电和光伏发电补贴缺口和大比例弃电问题的研究[J]. 国际经济评论, 2018(4): 67-85. |
[7] | JENKINS J D, ZHOU Z, PONCIROLI R, et al. The benefits of nuclear flexibility in power system operations with renewable energy[J]. Applied Energy, 2018, 222: 872-884. DOI: 10.1016/j.apenergy.2018.03.002. |
[8] | GARÐARSDÓTTIR S Ó, GÖRANSSON L, NO-RMANN F, et al. Improving the flexibility of coal-fired power generators: Impact on the composition of a cost-optimal electricity system[J]. Applied Energy, 2018, 209: 277-289. DOI: 10.1016/j.apenergy. 2017. 10.085. |
[9] | SUN Y, XU C, XIN T T, et al. A comprehensive analysis of a thermal energy storage concept based on low-rank coal pre-drying for reducing the minimum load of coal-fired power plants[J]. Applied Thermal Engineering, 2019, 156: 77-90. DOI: 10. 1016/j.applthermaleng.2019.04.049. |
[10] | FU H L, HE Q, SONG J T, et al. Thermodynamic of a novel solar heat storage compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2021, 247: 114757. DOI: 10.1016/j.enconman.2021.114757. |
[11] | CUI S S, SONG J T, WANG T T, et al. Thermodynamic analysis and efficiency assessment of a novel multi-generation liquid air energy storage system[J]. Energy, 2021, 235: 121322. DOI: 10. 1016/j.energy.2021.121322. |
[12] | KANTHARAJ B, GARVEY S, PIMM A. Compressed air energy storage with liquid air capacity extension[J]. Applied Energy, 2015, 157: 152-164. DOI: 10.1016/j.apenergy.2015.07.076. |
[13] | ZHANG L, CUI J, ZHANG Y P, et al. Performance analysis of a compressed air energy storage system integrated into a coal-fired power plant[J]. Energy Conversion and Management, 2020, 225: 113446. DOI: 10.1016/j.enconman.2020.113446. |
[14] | XU M J, WANG X, WANG Z H, et al. Preliminary design and performance assessment of compressed supercritical carbon dioxide energy storage system[J]. Applied Thermal Engineering, 2021, 183: 116153. DOI: 10.1016/j.applthermaleng.2020.116153. |
[15] | HE Q, LIU H, HAO Y P, et al. Thermodynamic analysis of a novel supercritical compressed carbon dioxide energy storage system through advanced exergy analysis[J]. Renewable Energy, 2018, 127: 835-849. DOI: 10.1016/j.renene.2018.05.005. |
[16] | 杨玉, 黄斌, 孟欣, 等. 基于二氧化碳热力循环的储能研究综述[J]. 热力发电, 2023, 52(6): 12-23. DOI: 10.19666/j.rlfd.202212294. |
YANG Y, HUANG B, MENG X, et al. Research summary on the energy storage technologies based on carbon dioxide thermodynamic cycle[J]. Thermal Power Generation, 2023, 52(6): 12-23. DOI: 10.19666/j.rlfd.202212294. | |
[17] | 郝佳豪, 越云凯, 张家俊, 等. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199. |
HAO J H, YUE Y K, ZHANG J J, et al. Research status and development prospect of carbon dioxide energy-storage technology[J]. Energy Storage Science and Technology, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199. | |
[18] | PAN L S, LI B, SHI W X, et al. Optimization of the self-condensing CO2 transcritical power cycle using solar thermal energy[J]. Applied Energy, 2019, 253: 113608. DOI: 10.1016/j.apenergy.2019.113608. |
[19] | LIU M M, LIU M, WANG Y, et al. Thermodynamic optimization of coal-fired combined heat and power (CHP) systems integrated with steam ejectors to achieve heat-power decoupling[J]. Energy, 2021, 229: 120707. DOI: 10.1016/j.energy.2021.120707. |
[20] | ZHANG X A, ZHANG H, KONG F C, et al. Numerical simulation of blade-type adjustable steam ejector[J]. Applied Thermal Engineering, 2024, 238: 122199. DOI: 10.1016/j.applthermaleng. 2023.122199. |
[21] | XU W P, ZHAO P, GOU F F, et al. A combined heating and power system based on compressed carbon dioxide energy storage with carbon capture: Exploring the technical potential[J]. Energy Conversion and Management, 2022, 260: 115610. DOI: 10.1016/j.enconman.2022.115610. |
[22] | CAYER E, GALANIS N, DESILETS M, et al. Analysis of a carbon dioxide transcritical power cycle using a low temperature source[J]. Applied Energy, 2009, 86(7/8): 1055-1063. DOI: 10.1016/j.apenergy.2008.09.018. |
[23] | TANG B, SUN L, XIE Y H. Comprehensive performance evaluation and optimization of a liquid carbon dioxide energy storage system with heat source[J]. Applied Thermal Engineering, 2022, 215: 118957. DOI: 10.1016/j.applthermaleng. 2022.118957. |
[24] | SRIVEERAKUL T, APHORNRATANA S, CHUNNANOND K. Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD results[J]. International Journal of Thermal Sciences, 2007, 46(8): 812-822. DOI: 10. 1016/j.ijthermalsci.2006.10.014. |
[1] | Tao ZHANG, Jiakai LIU, Tianle DAI, Cheng XU. Comparative analysis of thermal performance of electrothermal energy storage and liquid energy storage based on carbon dioxide [J]. Energy Storage Science and Technology, 2024, 13(5): 1554-1563. |
[2] | Liugan ZHANG, Yingchi ZHOU, Wenbing SUN, Kai YE, Longxiang CHEN. Performance of precooled CAES system using ORC-VCR to recover compression heat [J]. Energy Storage Science and Technology, 2024, 13(2): 611-622. |
[3] | Zhenkun XIAO, Zhen CHEN, Zhuang YANG, Hongxun QI, Jun YAN. Thermodynamic analysis of an advanced high-temperature heat pump energy storage unit based on phase-change heat storage [J]. Energy Storage Science and Technology, 2024, 13(12): 4330-4338. |
[4] | Jiajun ZHANG, Xiaoqiong LI, Zhentao ZHANG, Jiahao HAO, Pingyang ZHENG, Ze YU, Junling YANG, Yanan JING, Yunkai YUE. Research progress of compressed carbon dioxide energy storage system [J]. Energy Storage Science and Technology, 2023, 12(6): 1928-1945. |
[5] | Li SHENG, Xinjie XUE, Yanjun BO, Changying ZHAO. Simulation and analysis of pumped thermal electricity storage system based on phase change energy storage medium [J]. Energy Storage Science and Technology, 2022, 11(11): 3649-3657. |
[6] | Lexuan LI, Yujie XU, Zhao YIN, Huan GUO, Xianrong ZHANG, Haisheng CHEN, Xuezhi ZHOU. Exergy destruction characteristics of a supercritical carbon-dioxide energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1824-1834. |
[7] | Xu LIU, Xuqing YANG, Zhan LIU. A novel liquid energy storage system based on a carbon dioxide mixture [J]. Energy Storage Science and Technology, 2021, 10(5): 1806-1814. |
[8] | Xiaolu WANG, Huan GUO, Hualiang ZHANG, Yujie XU, Yingjun LIU, Haisheng CHEN. Analysis of energy coupling characteristics between cogeneration units and compressed air energy storage integrated systems in thermal power plants [J]. Energy Storage Science and Technology, 2021, 10(2): 598-610. |
[9] | Xuqing YANG, Zhenzhu YU, Xiaohu YANG, Zhan LIU. Combined heating and power system coupled with compressed air energy storage and absorption heat pump cycle [J]. Energy Storage Science and Technology, 2021, 10(1): 362-369. |
[10] | Lei HOU, Zichi WANG, Yingchao LI, Saihao WANG, Yajie ZHANG, Yusen ZHANG. Analysis and multi-objective optimization of CAES system [J]. Energy Storage Science and Technology, 2021, 10(1): 379-384. |
[11] | Zhenshuai YANG, Huanran WANG, Ruixiong LI, Yan ZHANG, Hao CHEN, Zhibo LI, Erren YAO. A novel combined cooling heating and power system with coupled compressed air energy storage and supercharged diesel engine [J]. Energy Storage Science and Technology, 2020, 9(6): 1917-1925. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||