Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (9): 3552-3563.doi: 10.19799/j.cnki.2095-4239.2025.0140
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Chengshan XU1(), Han LI2, Yan WANG2, Languang LU1(
), Xuning FENG1, Minggao OUYANG1
Received:
2025-02-22
Revised:
2025-04-09
Online:
2025-09-28
Published:
2025-09-05
Contact:
Languang LU
E-mail:xuchsh_2013@sina.cn;lulg@tsinghua.edu.cn
CLC Number:
Chengshan XU, Han LI, Yan WANG, Languang LU, Xuning FENG, Minggao OUYANG. Research on fire propagation characteristics and energy transfer mechanisms during the triggering process in double-layer energy storage batteries[J]. Energy Storage Science and Technology, 2025, 14(9): 3552-3563.
[1] | 喻航, 张英, 徐超航, 等. 锂电储能系统热失控防控技术研究进展[J]. 储能科学与技术, 2022, 11(8): 2653-2663. DOI: 10.19799/j.cnki. 2095-4239.2022.0116. |
YU H, ZHANG Y, XU C H, et al. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems[J]. Energy Storage Science and Technology, 2022, 11(8): 2653-2663. DOI: 10.19799/j.cnki.2095-4239.2022. 0116. | |
[2] | CHEN J Y, XU C S, WANG Q Z, et al. The thermal-gas coupling mechanism of lithium iron phosphate batteries during thermal runaway[J]. Journal of Power Sources, 2025, 625: 235728. DOI: 10.1016/j.jpowsour.2024.235728. |
[3] | 李涵, 王炎, 华剑锋, 等. 大容量磷酸铁锂电池热失控行为及测试气氛影响规律研究[J]. 电源技术, 2024, 48(8): 1634-1641. |
LI H, WANG Y, HUA J F, et al. Study on thermal runaway behavior and test atmosphere effecting rule of high-capacity lithium iron phosphate battery[J]. Chinese Journal of Power Sources, 2024, 48(8): 1634-1641. | |
[4] | 黄峥, 秦鹏, 石晗, 等. 过热条件下86 Ah磷酸铁锂电池热失控行为研究[J]. 高电压技术, 2022, 48(3): 1185-1191. DOI: 10.13336/j.1003-6520.hve.20210126. |
HUANG Z, QIN P, SHI H, et al. Study on thermal runaway behavior of 86 ah lithium iron phosphate battery under overheat condition[J]. High Voltage Engineering, 2022, 48(3): 1185-1191. DOI: 10.13336/j.1003-6520.hve.20210126. | |
[5] | 宋来丰, 梅文昕, 贾壮壮, 等. 绝热条件下280 Ah大型磷酸铁锂电池热失控特性分析[J]. 储能科学与技术, 2022, 11(8): 2411-2417. DOI: 10.19799/j.cnki.2095-4239.2022.0349. |
SONG L F, MEI W X, JIA Z Z, et al. Analysis of thermal runaway characteristics of 280 Ah large LiFePO4 battery under adiabatic conditions[J]. Energy Storage Science and Technology, 2022, 11(8): 2411-2417. DOI: 10.19799/j.cnki.2095-4239.2022.0349. | |
[6] | FENG X N, ZHANG F S, HUANG W S, et al. Mechanism of internal thermal runaway propagation in blade batteries[J]. Journal of Energy Chemistry, 2024, 89: 184-194. DOI: 10.1016/j.jechem.2023.09.050. |
[7] | 叶锦昊, 侯军辉, 张正国, 等. 100 Ah磷酸铁锂软包电池的热失控特性及产气行为[J]. 储能科学与技术, 2025, 14(2): 636-647. DOI: 10. 19799/j.cnki.2095-4239.2024.0764. |
YE J H, HOU J H, ZHANG Z G, et al. Thermal runaway characteristics and gas generation behavior of 100 Ah lithium iron phosphate pouch cell[J]. Energy Storage Science and Technology, 2025, 14(2): 636-647. DOI: 10.19799/j.cnki.2095-4239.2024.0764. | |
[8] | 邓康, 张英, 徐伯乐, 等. 磷酸铁锂电池组燃烧特性研究[J]. 中国安全科学学报, 2019, 29(11): 83-88. DOI: 10.16265/j.cnki.issn1003-3033.2019.11.014. |
DENG K, ZHANG Y, XU B L, et al. Study on combustion characteristics of lithium iron phosphate battery pack[J]. China Safety Science Journal, 2019, 29(11): 83-88. DOI: 10.16265/j.cnki.issn1003-3033.2019.11.014. | |
[9] | 王庭华, 翟宏举, 秦鹏, 等. 模组箱体空间内磷酸铁锂电池热失控及其传播行为研究[J]. 火灾科学, 2022, 31(1): 25-34. |
WANG T H, ZHAI H J, QIN P, et al. Study on the thermal runaway and its propagation behaviors of lithium iron phosphate battery in module box space[J]. Fire Safety Science, 2022, 31(1): 25-34. | |
[10] | ZHAI H J, CHI M S, LI J Y, et al. Thermal runaway propagation in large format lithium ion battery modules under inclined ceilings[J]. Journal of Energy Storage, 2022, 51: 104477. DOI: 10.1016/j.est.2022.104477. |
[11] | SONG L F, HUANG Z H, MEI W X, et al. Thermal runaway propagation behavior and energy flow distribution analysis of 280 Ah LiFePO4 battery[J]. Process Safety and Environmental Protection, 2023, 170: 1066-1078. DOI: 10.1016/j.psep.2022. 12.082. |
[12] | 陈晔, 李晋, 吴候福, 等. 大容量储能电池模组热失控传播行为与燃爆风险分析[J]. 储能科学与技术, 2024, 13(8): 2803-2812. DOI: 10. 19799/j.cnki.2095-4239.2024.0216. |
CHEN Y, LI J, WU H F, et al. Analysis of thermal runaway propagation and explosion risk of a large battery module for energy storage[J]. Energy Storage Science and Technology, 2024, 13(8): 2803-2812. DOI: 10.19799/j.cnki.2095-4239.2024. 0216. | |
[13] | FANG J, CAI J N, HE X Z. Experimental study on the vertical thermal runaway propagation in cylindrical Lithium-ion batteries: Effects of spacing and state of charge[J]. Applied Thermal Engineering, 2021, 197: 117399. DOI: 10.1016/j.applthermaleng. 2021.117399. |
[14] | WANG Q Z, WANG H B, XU C S, et al. Multidimensional fire propagation of lithium-ion phosphate batteries for energy storage[J]. eTransportation, 2024, 20: 100328. DOI: 10.1016/j.etran. 2024.100328. |
[15] | ZHOU Z Z, ZHOU X D, JU X Y, et al. Experimental study of thermal runaway propagation along horizontal and vertical directions for LiFePO4 electrical energy storage modules[J]. Renewable Energy, 2023, 207: 13-26. DOI: 10.1016/j.renene. 2023.03.004. |
[16] | GAO P, SONG L F, JIA Z Z, et al. Revealing the contribution of flame spread to vertical thermal runaway propagation for energy storage systems[J]. Journal of Power Sources, 2025, 628: 235897. DOI: 10.1016/j.jpowsour.2024.235897. |
[17] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 火灾试验 表面制品的实体房间火试验方法: GB/T 25207—2010[S]. 北京: 中国标准出版社, 2011. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Fire tests—Full-scale room test for surface products: GB/T 25207—2010[S]. Beijing: Standards Press of China, 2011. | |
[18] | 国家市场监督管理总局, 国家标准化管理委员会. 电力储能用锂离子电池: GB/T 36276—2018[S]. 北京: 中国标准出版社, 2018. |
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Lithium ion battery for electrical energy storage: GB/T 36276—2018[S]. Beijing: Standards Press of China, 2018. | |
[19] | 固定式储能系统安装标准: NFPA 855—2023[S]. |
Standard for the Installation of Stationary Energy Storage Systems: NFPA 855—2023[S]. | |
[20] | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. DOI: 10.1016/j.ensm.2017.05.013. |
[1] | Ye CHEN, Jin LI, Ruilani ZHAO, Shaoyu ZHANG, Yuxi CHU, Kang YANG, Xiaoxue LIAO, Bo JIANG, Ping ZHUO. Comparative experimental study on thermal runaway propagation of battery modules under different states of charge [J]. Energy Storage Science and Technology, 2025, 14(9): 3402-3413. |
[2] | Xiuwen TAN, Ling LI. Study on the thermal runaway characteristics of lithium-ion batteries and their thermal management under local overheating conditions [J]. Energy Storage Science and Technology, 2025, 14(9): 3521-3529. |
[3] | Yuxi CHU, Chang MA, Hongguang CHEN, Shaoyu ZHANG, Ping ZHUO. Thermal runaway and gas production characteristics of a 180 Ah sodium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(9): 3611-3618. |
[4] | Mingxuan LIU, Wentao CHEN, Shaopeng SHEN, Shijie ZHANG, zhen WEI, Biao MA, Danhua LI, Shiqiang LIU, Fang WANG. Research on accelerated aging and safety characteristics of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2025, 14(9): 3530-3537. |
[5] | Lei ZHANG. Operating status monitoring and evaluation of lithium-ion battery energy storage power stations [J]. Energy Storage Science and Technology, 2025, 14(9): 3538-3540. |
[6] | Bin YANG, Jun YANG, Lang XU, Haowei WEN, Dengfeng LIU, Dianbo RUAN. Ball-head indentation-induced safety evaluation of capacitive lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(8): 3090-3099. |
[7] | Chengshan XU, Ye SUN, Zhikai YANG, Mingqiang ZHAO, Yalun LI, Xuning FENG, Hewu WANG, Languang LU, Minggao OUYANG. Research progress on arc induced by thermal runaway in lithium-ion battery systems for energy storage [J]. Energy Storage Science and Technology, 2025, 14(8): 3037-3050. |
[8] | Feng XIONG, Depeng KONG, Ping PING, Yue ZHANG, Xiantong REN, Yao LV. Study on the characteristics of electrothermal coupling-induced thermal runaway of ternary lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(7): 2752-2760. |
[9] | Wenyuan WENG, Bin SHEN, Jiangong ZHU, Yang WANG, Huapeng LU, Wuliyasu HE, Haonan LIU, Haifeng DAI, Xuezhe WEI. Detecting hazardous lithium plating on anodes of lithium-ion batteries—A review of in situ methods [J]. Energy Storage Science and Technology, 2025, 14(7): 2575-2589. |
[10] | Zijing ZHANG, Beibei YUAN, Hong LI, Ying GAO. Thermal runaway gas detection and early warning of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(7): 2820-2832. |
[11] | Zheng LI, Xukai REN. Analysis on fire safety management measures for energy storage power stations [J]. Energy Storage Science and Technology, 2025, 14(6): 2377-2379. |
[12] | Ziming MO, Zongxin RAO, Jianfei YANG, Menghao YANG, Liming CAI. Construction and characteristic analysis of key parameters in a gas-thermal model for thermal runaway in lithium-ion battery based on overcharge [J]. Energy Storage Science and Technology, 2025, 14(5): 1784-1796. |
[13] | Lei PENG, Zhaopeng NI, Yue YU, Fupeng SUN, Xiulong XIA, Peng ZHANG, Sibo SUN. Experimental study on NCM lithium-ion battery electric vehicle fire caused by overcharging [J]. Energy Storage Science and Technology, 2025, 14(4): 1484-1495. |
[14] | Peng PENG, Chengdong WANG, Man CHEN, Qingsong WANG, Qikai LEI, Kaiqiang JIN. Hazard assessment of thermal runaway in a lithium-titanate battery energy storage power plant [J]. Energy Storage Science and Technology, 2025, 14(4): 1617-1630. |
[15] | Wenqiang FAN, Zinan SHI, Daiming YANG, Huishi LIANG, Ye CHEN. Experimental study on the suppression effect of different coolants on battery thermal runaway [J]. Energy Storage Science and Technology, 2025, 14(4): 1554-1563. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||