Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (6): 1749-1759.doi: 10.19799/j.cnki.2095-4239.2021.0722
Previous Articles Next Articles
YU Chunhui(), HE Ziying, ZHANG Chenxi(
), LIN Xianqing, XIAO Zhexi, WEI Fei(
)
Received:
2021-12-31
Revised:
2022-01-11
Online:
2022-06-05
Published:
2022-06-13
Contact:
ZHANG Chenxi, WEI Fei
E-mail:chemych@126.com;cxzhang@mail.tsinghua.edu.cn;wf-dce@tsinghua.edu.cn
CLC Number:
YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte[J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759.
Fig. 1
Study of the chemical reaction. (a) Illustration of the experiment; (b) and (c) MS results of the electrolyte and Si after the reaction, respectively; (d) XRD data of Si after the reaction; (e) F1s spectrum results for Si@C after the reaction; TEM image of Si@C before (f) and after (g) reaction; (h) EDS Mapping of Si@C after reaction"
Fig. 7
The Comparison of Si@C and Si@TiN after different cycles. (a) SEM image of fresh Si@C; (b) SEM image of Si@C after 5 cycles; (c) Top-view SEM image of fresh Si@C; (d) Top-view SEM image of Si@C after 5 cycles; (e) SEM image of fresh Si@TiN; (f) SEM image of Si@TiN after 5 cycles; (g) Top-view SEM image of fresh Si@TiN; (h) Top-view SEM image of Si@C after 5 cycles; (i) XPS data of Si@C after different cycles; (j) XPS data of Si@TiN after different cycles; (k) Relative percentage of different components for Si@C; (l) Relative percentage of different components for Si@TiN"
1 | SUN Y M, LIU N, CUI Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1: 16071. |
2 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
3 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
4 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
5 | LU Y X, RONG X H, HU Y S, et al. Research and development of advanced battery materials in China[J]. Energy Storage Materials, 2019, 23: 144-153. |
6 | LUO F, LIU B N, ZHENG J Y, et al. Review—nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): A2509-A2528. |
7 | AUPPERLE F, VON ASPERN N, BERGHUS D, et al. The role of electrolyte additives on the interfacial chemistry and thermal reactivity of Si-anode-based Li-ion battery[J]. ACS Applied Energy Materials, 2019, 2(9): 6513-6527. |
8 | VEITH G M, BAGGETTO L, SACCI R L, et al. Direct measurement of the chemical reactivity of silicon electrodes with LiPF6-based battery electrolytes[J]. Chemical Communications (Cambridge, England), 2014, 50(23): 3081-3084. |
9 | SEYFERTH D. Dimethyldichlorosilane and the direct synthesis of methylchlorosilanes. the key to the silicones industry[J]. Organometallics, 2001, 20(24): 4978-4992. |
10 | YU C H, LIN X Q, CHEN X, et al. Suppressing the side reaction by a selective blocking layer to enhance the performance of Si-based anodes[J]. Nano Letters, 2020, 20(7): 5176-5184. |
11 | 姜晓萍, 左翔, 蔡烽, 等. 六氟磷酸锂的热分解动力学研究[J]. 电源技术, 2012, 36(4): 467-469. |
JIANG X P, ZUO X, CAI F, et al. Decomposition kinetics research of LiFP6 at elevated temperature[J]. Chinese Journal of Power Sources, 2012, 36(4): 467-469. | |
12 | YANG H, ZHUANG G V, ROSS P N J. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6[J]. Journal of Power Sources, 2006, 161(1): 573-579. |
13 | GAVRITCHEV K, SHARPATAYA G A, SMAGIN A, et al. Calorimetric study of thermal decomposition of lithium hexafluorophosphate[J]. Journal of Thermal Analysis and Calorimetry, 2003, 73: 71-83. |
14 | YU C H, CHEN X, XIAO Z X, et al. Silicon carbide as a protective layer to stabilize Si-based anodes by inhibiting chemical reactions[J]. Nano Letters, 2019, 19(8): 5124-5132. |
15 | WANG X L, BAI S Z, LI F, et al. Effect of plasma nitriding and titanium nitride coating on the corrosion resistance of titanium[J]. The Journal of Prosthetic Dentistry, 2016, 116(3): 450-456. |
16 | FERRAZ E P, SVERZUT A T, FREITAS G P, et al. Bone tissue response to plasma-nitrided titanium implant surfaces[J]. Journal of Applied Oral Science: Revista FOB, 2015, 23(1): 9-13. |
17 | GUO L T, WU H T, LIU X C, et al. Effect of fluoride corrosion on the bonding strength of Ti-porcelain under static loads[J]. Materials Letters, 2009, 63(28): 2486-2488. |
18 | RIZZI M, GATTI G, MIGLIARIO M, et al. Effect of zirconium nitride physical vapor deposition coating on preosteoblast cell adhesion and proliferation onto titanium screws[J]. The Journal of Prosthetic Dentistry, 2014, 112(5): 1103-1110. |
19 | GUO L T, LIU X C, HE Z Y, et al. Effect of fluoride corrosion on the bonding strength of Ti-porcelain[J]. Materials Letters, 2008, 62(14): 2200-2202. |
20 | NAKAGAWA M, MATONO Y, MATSUYA S, et al. The effect of Pt and Pd alloying additions on the corrosion behavior of titanium in fluoride-containing environments[J]. Biomaterials, 2005, 26(15): 2239-2246. |
21 | LIU X Y, CHU P K, DING C X. Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Materials Science and Engineering: Reports, 2004, 47(3/4): 49-121. |
22 | 刘马林. 流化床-化学气相沉积技术在先进核燃料制备中的应用进展[J]. 化工进展, 2019, 38(4): 1646-1653. |
LIU M L. Research activities on FB-CVD technology application in advanced nuclear fuel fabrication[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1646-1653. | |
23 | LIU R Z, ZHAO J, LIU M L, et al. Preparation, performance and nuclear applications of silicon carbide materials prepared by FB-CVD method[J]. Journal of the Chinese Ceramic Society, 2020, 48(3): 381-390. |
24 | KATOH Y, SNEAD L L. Silicon carbide and its composites for nuclear applications-Historical overview[J]. Journal of Nuclear Materials, 2019, 526: doi: 10.1016/j.jnucmat.2019.151849. |
25 | KOYANAGI T, TERRANI K, HARRISON S, et al. Additive manufacturing of silicon carbide for nuclear applications[J]. Journal of Nuclear Materials, 2021, 543: doi: 10.1016/j.jnucmat. 2020.152577. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[6] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[7] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[8] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[9] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[10] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[11] | Xuan WANG, Qiang YE. The aggravation of side reactions caused by insufficient localized liquid supply in an all-vanadium redox flow battery stack [J]. Energy Storage Science and Technology, 2022, 11(5): 1455-1467. |
[12] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[13] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[14] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[15] | Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||