Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (2): 459-467.doi: 10.19799/j.cnki.2095-4239.2022.0577
• Energy Storage System and Engineering • Previous Articles Next Articles
Received:
2022-10-08
Revised:
2022-10-23
Online:
2023-02-05
Published:
2022-11-24
Contact:
Wei CHEN
E-mail:sxq18326186289@163.com;weichen@shmtu.edu.cn
CLC Number:
Xueqing SHEN, Wei CHEN. Thermal management performance of batteries with embedded tree-like fins for phase transition layers[J]. Energy Storage Science and Technology, 2023, 12(2): 459-467.
Table 3
Thermophysical properties of Li-ion, paraffin RT-42, copper and acrylic[22]"
物性 | 单位 | 锂离子电池 | 石蜡 | 铜 | 丙烯酸 |
---|---|---|---|---|---|
尺寸 | mm | Φ18 × 65 | |||
密度 | kg/m3 | 2720 | 820 | 8978 | 1215 |
比热容 | J/(kg·K) | 300 | 2000 | 381 | 1300 |
质量 | g | 44.5 | |||
热导率 | W/(m·K) | 3 | 0.2 | 387.6 | 0.17 |
动力黏度 | kg/(m·s) | 0.02 | |||
热扩散系数 | K-1 | 0.0001 | |||
相变潜热 | J/kg | 165000 | |||
固相温度 | K | 311.15 | |||
液相温度 | K | 316.15 | |||
额定电压 | V | 3.6 | |||
额定容量 | Ah | 2.4 | |||
内阻 | mΩ | 30 |
1 | RAIJMAKERS L H J, DANILOV D L, EICHEL R A, et al. A review on various temperature-indication methods for Li-ion batteries[J]. Applied Energy, 2019, 240: 918-945. |
2 | FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. |
3 | MALI V, SAXENA R, KUMAR K, et al. Review on battery thermal management systems for energy-efficient electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2021, 151: doi: 10.1016/j.rser.2021.111611. |
4 | LU Z, YU X L, WEI L C, et al. Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement[J]. Applied Thermal Engineering, 2018, 136: 28-40. |
5 | YANG T R, YANG N X, ZHANG X W, et al. Investigation of the thermal performance of axial-flow air cooling for the lithium-ion battery pack[J]. International Journal of Thermal Sciences, 2016, 108: 132-144. |
6 | YANG W, ZHOU F, ZHOU H B, et al. Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling[J]. Applied Thermal Engineering, 2020, 175: doi: 10.1016/j.applthermaleng.2020.115331. |
7 | WU W X, WANG S F, WU W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281. |
8 | ZHANG Z Q, WEI K. Experimental and numerical study of a passive thermal management system using flat heat pipes for lithium-ion batteries[J]. Applied Thermal Engineering, 2020, 166: doi: 10.1016/j.applthermaleng.2019.114660. |
9 | WANG Q, JIANG B, XUE Q F, et al. Experimental investigation on EV battery cooling and heating by heat pipes[J]. Applied Thermal Engineering, 2015, 88: 54-60. |
10 | JAGUEMONT J, OMAR N, VAN DEN BOSSCHE P, et al. Phase-change materials (PCM) for automotive applications: A review[J]. Applied Thermal Engineering, 2018, 132: 308-320. |
11 | VERMA A, SHASHIDHARA S, RAKSHIT D. A comparative study on battery thermal management using phase change material (PCM)[J]. Thermal Science and Engineering Progress, 2019, 11: 74-83. |
12 | MALIK M, DINCER I, ROSEN M A. Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles[J]. International Journal of Energy Research, 2016, 40(8): 1011-1031. |
13 | SUN Z Q, FAN R J, YAN F, et al. Thermal management of the lithium-ion battery by the composite PCM-Fin structures[J]. International Journal of Heat and Mass Transfer, 2019, 145: doi: 10.1016/j.ijheatmasstransfer.2019.118739. |
14 | LI W Q, QU Z G, HE Y L, et al. Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials[J]. Journal of Power Sources, 2014, 255: 9-15. |
15 | BAIS A R, SUBHEDAR D G, PANCHAL S. Critical thickness of nano-enhanced RT-42 paraffin based battery thermal management system for electric vehicles: A numerical study[J]. Journal of Energy Storage, 2022, 52: doi: 10.1016/j.est.2022.104757. |
16 | ZHANG C B, LI J, CHEN Y P. Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins[J]. Applied Energy, 2020, 259: doi: 10.1016/j.apenergy.2019.114102. |
17 | AL-MUDHAFAR A H N, NOWAKOWSKI A F, NICOLLEAU F C G A. Enhancing the thermal performance of PCM in a shell and tube latent heat energy storage system by utilizing innovative fins[J]. Energy Reports, 2021, 7: 120-126. |
18 | XU P, YU B M, YUN M J, et al. Heat conduction in fractal tree-like branched networks[J]. International Journal of Heat and Mass Transfer, 2006, 49(19/20): 3746-3751. |
19 | AMBEKAR S, RATH P, BHATTACHARYA A. A novel PCM and TCE based thermal management of battery module[J]. Thermal Science and Engineering Progress, 2022, 29: doi: 10.1016/j.tsep.2022.101196. |
20 | TIAN M W, SMAISIM G F, YAN S R, et al. Economic cost and efficiency analysis of a lithium-ion battery pack with the circular and elliptical cavities filled with phase change materials[J]. Journal of Energy Storage, 2022, 52: doi: 10.1016/j.est.2022.104794. |
21 | TALELE V, THORAT P, GOKHALE Y P, et al. Phase change material based passive battery thermal management system to predict delay effect[J]. Journal of Energy Storage, 2021, 44: doi: 10.1016/j.est.2021.103482. |
22 | CHOUDHARI V G, DHOBLE A S, PANCHAL S. Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization[J]. International Journal of Heat and Mass Transfer, 2020, 163: doi: 10.1016/j.ijheatmasstransfer.2020.120434. |
23 | ALIPANAH M, LI X L. Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams[J]. International Journal of Heat and Mass Transfer, 2016, 102: 1159-1168. |
24 | FADL M, EAMES P. A numerical investigation into the heat transfer and melting process of lauric acid in a rectangular enclosure with three values of wall heat flux[J]. Energy Procedia, 2019, 158: 4502-4509. |
25 | WENG J W, OUYANG D X, YANG X Q, et al. Optimization of the internal fin in a phase-change-material module for battery thermal management[J]. Applied Thermal Engineering, 2020, 167: doi: 10.1016/j.applthermaleng.2019.114698. |
[1] | Wei LIU, Zhenming LI, Mingyang LIU, Cenyu YANG, Chao MEI, Ying LI. Review of high-temperature phase change heat storage material preparation and applications [J]. Energy Storage Science and Technology, 2023, 12(2): 398-430. |
[2] | Jinmei DONG, Qiyuan LIU, Fang WU, Lirui JIA, Jing WEN, Chenggong CHANG, Weixin ZHENG, Xueying XIAO. Phase change characteristics and proportion adjustment of fatty acid binary energy storage materials [J]. Energy Storage Science and Technology, 2023, 12(2): 349-356. |
[3] | Qianjun MAO, Yuanyuan ZHU. Study on heat storage performance of novel bifurcated fins to strengthen shell-and-tube energy storage tanks [J]. Energy Storage Science and Technology, 2023, 12(1): 69-78. |
[4] | Junlei WANG, Diling ZHANG, Kun WANG, Dongdong XU, Xianggui XU, Hua YAO, Wenwei LIU, Yun HUANG. Carbonates/blast furnace slag form-stable phase change materials [J]. Energy Storage Science and Technology, 2022, 11(9): 3028-3034. |
[5] | Jingqiang ZHANG, Haimin WANG, Nan LU. Temperature field characteristics of a small NCM811 traction battery module cooled by insulating oil immersion [J]. Energy Storage Science and Technology, 2022, 11(8): 2612-2619. |
[6] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[7] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[8] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
[9] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. |
[10] | Jianglong DU, Yiting LIN, Wenqi YANG, Cheng LIAN, Honglai LIU. Application of simulation in thermal safety design of lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 866-877. |
[11] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
[12] | Jie XUE, Jun ZHANG, Zhao DU, Rukun HU, Xiaohu YANG. A numerical simulation study on the heat-storage performance of a flat-bottom heat storage tank [J]. Energy Storage Science and Technology, 2022, 11(12): 3855-3861. |
[13] | Yanzong LV, Bing HAN, Hongyu WANG, Yangfei XU, Xing ZHANG. Thermal management control of tram power battery using on air conditioner [J]. Energy Storage Science and Technology, 2022, 11(10): 3231-3238. |
[14] | Qi ZHANG, Yujing WANG, Yinlei LI, Chongyang LIU. A novel composite phase change material with cold storage and insulation and its application [J]. Energy Storage Science and Technology, 2022, 11(10): 3133-3141. |
[15] | Jin CHAI, Jun WANG, Qiqiang NI. Experiment on heat transfer performance of phase change materials strengthened by nanoparticles and fins [J]. Energy Storage Science and Technology, 2022, 11(10): 3161-3170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||