1 |
CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1: 16013.
|
2 |
ESHETU G G, ZHANG H, JUDEZ X, et al. Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes[J]. Nature Communications, 2021, 12(1): 5459.
|
3 |
CHEN X, LI H, YAN Z H, et al. Structure design and mechanism analysis of silicon anode for lithium-ion batteries[J]. Science China Materials, 2019, 62(11): 1515-1536.
|
4 |
ZHANG C Z, WANG F, HAN J, et al. Challenges and recent progress on silicon-based anode materials for next-generation lithium-ion batteries[J]. Small Structures, 2021, 2(6): doi: 10.1002/sstr.202100009.
|
5 |
TEKI R, DATTA M K, KRISHNAN R, et al. Nanostructured silicon anodes for lithium ion rechargeable batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2009, 5(20): 2236-2242.
|
6 |
RAHMAN M A, SONG G S, BHATT A I, et al. Nanostructured silicon anodes for high-performance lithium-ion batteries[J]. Advanced Functional Materials, 2015, 26(5): 647-678.
|
7 |
YIN Y X, WAN L J, GUO Y G. Silicon-based nanomaterials for lithium-ion batteries[J]. Chinese Science Bulletin, 2012, 57(32): 4104-4110.
|
8 |
GU M. Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges[J]. Nano Energy, 2015, 17: 366-383.
|
9 |
YANG J. SiOx-based anodes for secondary lithium batteries[J]. Solid State Ionics, 2002, 152/153: 125-129.
|
10 |
HE S G, HUANG S M, WANG S F, et al. Considering critical factors of silicon/graphite anode materials for practical high-energy lithium-ion battery applications[J]. Energy & Fuels, 2021, 35(2): 944-964.
|
11 |
MOYASSARI E, ROTH T, KÜCHER S, et al. The role of silicon in silicon-graphite composite electrodes regarding specific capacity, cycle stability, and expansion[J]. Journal of the Electrochemical Society, 2022, 169(1): 010504.
|
12 |
MÜLLER V, SCURTU R G, RICHTER K, et al. Effects of mechanical compression on the aging and the expansion behavior of Si/C-composite|NMC811 in different lithium-ion battery cell formats[J]. Journal of the Electrochemical Society, 2019, 166(15): A3796-A3805.
|
13 |
WAGNER N P, ASHEIM K, VULLUM-BRUER F, et al. Performance and failure analysis of full cell lithium ion battery with LiNi0.8Co0.15Al0.05O2 and silicon electrodes[J]. Journal of Power Sources, 2019, 437: doi: 10.1016/j.jpowsour.2019.226884.
|
14 |
ZHANG W, SON S B, GUTHREY H, et al. Mitigation of rapid capacity decay in silicon- LiNi0.6Mn0.2Co0.2O2 full batteries[J]. Energy Storage Materials, 2022, 49: 111-121.
|
15 |
YAO K P C, OKASINSKI J S, KALAGA K, et al. Operando quantification of (de)lithiation behavior of silicon-graphite blended electrodes for lithium-ion batteries[J]. Advanced Energy Materials, 2019, 9(8): doi: 10.1002/aenm.201803380.
|