Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (4): 1066-1074.doi: 10.19799/j.cnki.2095-4239.2022.0761
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xueli CHENG1(), Weifu ZHANG1, Chengcheng LUO1, Xiaoya YUAN1,2()
Received:
2022-12-23
Revised:
2023-01-10
Online:
2023-04-05
Published:
2023-05-08
Contact:
Xiaoya YUAN
E-mail:2248553391@qq.com;yuanxy@cqjtu.edu.cn
CLC Number:
Xueli CHENG, Weifu ZHANG, Chengcheng LUO, Xiaoya YUAN. Preparation of three-dimensional graphene/Fe3O4 composites by one-step hydrothermal method and their lithium storage performance[J]. Energy Storage Science and Technology, 2023, 12(4): 1066-1074.
1 | MOSALLANEJAD B, MALEK S S, ERSHADI M, et al. Cycling degradation and safety issues in sodium-ion batteries: Promises of electrolyte additives[J]. Journal of Electroanalytical Chemistry, 2021, 895: doi: 10.1016/j.jelechem.2021.115505. |
2 | YANG M, ZHANG W, SU D, et al. Flexible SnTe/carbon nanofiber membrane as a free-standing anode for high-performance lithium-ion and sodium-ion batteries[J]. Journal of Colloid and Interface Science, 2022, 605: 231-240. |
3 | XUE H, FANG Y X, ZENG L X, et al. Facile synthesis of hierarchical lychee-like Zn3V3O8@C/rGO nanospheres as high-performance anodes for lithium ion batteries[J]. Journal of Colloid and Interface Science, 2019, 533: 627-635. |
4 | LI J, HWANG S, GUO F M, et al. Phase evolution of conversion-type electrode for lithium ion batteries[J]. Nature Communications, 2019, 10(1): 1-10. |
5 | PHAM-CONG D, KIM S J, JEONG S Y, et al. Enhanced cycle stability of iron(II, III) oxide nanoparticles encapsulated with nitrogen-doped carbon and graphene frameworks for lithium battery anodes[J]. Carbon, 2018, 129: 621-630. |
6 | WEI W, YANG S B, ZHOU H X, et al. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage[J]. Advanced Materials (Deerfield Beach, Fla), 2013, 25(21): 2909-2914. |
7 | YU S H, LEE S H, LEE D J, et al. Conversion reaction-based oxide nanomaterials for lithium ion battery anodes[J]. Small (Weinheim an Der Bergstrasse, Germany), 2016, 12(16): 2146-2172. |
8 | JUNG S K, HWANG I, CHANG D, et al. Nanoscale phenomena in lithium-ion batteries[J]. Chemical Reviews, 2020, 120(14): 6684-6737. |
9 | ERSHADI M, JAVANBAKHT M, BRANDELL D, et al. Facile synthesis of amino-functionalized mesoporous Fe3O4/rGO 3D nanocomposite by diamine compounds as Li-ion battery anodes[J]. Applied Surface Science, 2022, 601: doi: 10.1016/j.apsusc.2022.154120. |
10 | ZHANG L, WU HAO BIN, LOU X W D. Iron-oxide-based advanced anode materials for lithium-ion batteries[J]. Advanced Energy Materials, 2014, 4(4): doi: 10.1002/aenm.201300958. |
11 | WU Q C, JIANG R L, LIU H W. Carbon layer encapsulated Fe3O4@Reduced graphene oxide lithium battery anodes with long cycle performance[J]. Ceramics International, 2020, 46(8): 12732-12739. |
12 | LIU G, SHAO J, GAO Y J, et al. Green fabrication of sandwich-like and dodecahedral C@Fe3O4@C as high-performance anode for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2017, 21(9): 2593-2600. |
13 | CONG H P, REN X C, WANG P, et al. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process[J]. ACS Nano, 2012, 6(3): 2693-2703. |
14 | 赵婷婷, 李小强, 张亚梅, 等. CoFe2O4@C复合纳米纤维膜作为自支撑锂离子电池负极[J]. 复合材料学报, 2022, 39(9): 4431-4440. |
ZHAO T T, LI X Q, ZHANG Y M, et al. CoFe2O4@C composite nanofiber films as self-standing anodes for lithium-ion batteries[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4431-4440. | |
15 | JIANG X, MA Y W, LI J J, et al. Self-assembly of reduced graphene oxide into three-dimensional architecture by divalent ion linkage[J]. The Journal of Physical Chemistry C, 2010, 114(51): 22462-22465. |
16 | ZHANG M, JIA M Q. High rate capability and long cycle stability Fe3O4-graphene nanocomposite as anode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2013, 551: 53-60. |
17 | 吴启超. Fe3O4@rGO/C锂离子电池负极材料制备与性能研究[D]. 徐州: 中国矿业大学, 2020. |
WU Q C. Study on the preparation and performance of Fe3O4@rGO/C anode materials for lithium ion batteries[D]. Xuzhou: China University of Mining and Technology, 2020. | |
18 | 夏东, 黄朋, 李恒. 水热法制备三维导电石墨烯气凝胶及其焦耳热性能研究[J]. 化工学报, 2021, 72(7): 3839-3848. |
XIA D, HUANG P, LI H. Joule-heating studies of electrically conducting three-dimensional graphene aerogels prepared by hydrothermal assembly[J]. CIESC Journal, 2021, 72(7): 3839-3848. | |
19 | 李晨, 熊传溪. Fe3O4/纳米纤维素气凝胶负极材料的制备及电化学性能[J]. 储能科学与技术, 2018, 7(3): 512-518. |
LI C, XIONG C X. The preparation of Fe3O4/nanocellulose aerogel nanocomposite as anodes for lithium-ion batteries and electrochemical performance[J]. Energy Storage Science and Technology, 2018, 7(3): 512-518. | |
20 | WANG N, LIU Q L, LI Y, et al. Self-crosslink assisted synthesis of 3D porous branch-like Fe3O4/C hybrids for high-performance lithium/sodium-ion batteries[J]. RSC Advances, 2017, 7(79): 50307-50316. |
21 | ZHANG Y G, LI Y, LI H P, et al. Electrochemical performance of carbon-encapsulated Fe3O4 nanoparticles in lithium-ion batteries: Morphology and particle size effects[J]. Electrochimica Acta, 2016, 216: 475-483. |
22 | AURBACH D, LEVI M D, LEVI E, et al. Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides[J]. Journal of the Electrochemical Society, 1998, 145(9): 3024-3034. |
23 | SHI Y, ZHANG J, BRUCK A M, et al. Conductive polymers: A tunable 3D nanostructured conductive gel framework electrode for high-performance lithium ion batteries[J]. Advanced Materials, 2017, 29(22): doi: 10.1002/adma.201603922. |
24 | 杨志伟. 铁基氧化物/石墨烯纳米复合材料的制备及其储锂性能研究[D]. 天津: 天津大学, 2017. |
YANG Z W. Synthesis and lithium-storage performance of Fe-based oxides/graphene nanocomposites[D]. Tianjin: Tianjin University, 2017. |
[1] | Jinhua SONG, Xinghao ZHANG, Zhenhe FENG, Guangyu CHENG, Honghui GU, Haitao GU, Ke WANG. Degradation mechanisms of SiO x -C composite anode based on in situ reference electrode [J]. Energy Storage Science and Technology, 2023, 12(4): 1059-1065. |
[2] | Liyue HU, Xingyan YAO. Thermal runaway of lithium-ion batteries based on orthogonal test [J]. Energy Storage Science and Technology, 2023, 12(4): 1268-1277. |
[3] | Pengkai WANG, Xinyan ZHANG, Guanghao ZHANG. Remaining useful life prediction of lithium-ion batteries based on ResNet-Bi-LSTM-Attention model [J]. Energy Storage Science and Technology, 2023, 12(4): 1215-1222. |
[4] | Zhi ZHAI, Fujin WANG, Yi DI, Peiyu MA, Zhibin ZHAO, Xuefeng CHEN. Hierarchical alignment transfer learning for lithium-ion battery capacity estimation [J]. Energy Storage Science and Technology, 2023, 12(4): 1223-1233. |
[5] | Ni YANG, Yuefeng SU, Lian WANG, Ning LI, Liang MA, Chen ZHU. Research progress of focused ion beam microscopy in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1283-1294. |
[6] | Jingjing RUAN, Fuyuan LIU, Shenshen LI, Guihong GAO, Yanxia LIU. Preparation of rod-like silicon-based material by carbon reduction and its application in lithium slurry batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1051-1058. |
[7] | Xiaoyu SHEN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Junfeg HAO, Mengyu TIAN, Hongxiang JI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2022 to Jan. 31, 2023) [J]. Energy Storage Science and Technology, 2023, 12(3): 639-653. |
[8] | Kuijie LI, Ping LOU, Minyuan GUAN, Jinlong MO, Weixin ZHANG, Yuancheng CAO, Shijie CHENG. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway [J]. Energy Storage Science and Technology, 2023, 12(3): 899-912. |
[9] | Xue YUAN, Hongji LI, Wenhui BAI, Zhengxi LI, Libin YANG, Kai WANG, Zhe CHEN. Application of biomass-derived carbon-based anode materials in sodium ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 721-742. |
[10] | Panlei CAO, Linxiu SUI, Jingyun FENG, Weifu ZHANG, Chengcheng LUO, Xiaoya YUAN. Fe3+ crosslinking reduced graphene oxides free-standing film by pre-encapsulated Fe3O4 nanospheres for lithium storage [J]. Energy Storage Science and Technology, 2023, 12(3): 710-720. |
[11] | Shugang LIU, Bo MENG, Zhenglong LI, Yaxiong YANG, Jian CHEN. Electrochemical performance of chemical prelithiated Li x (Mg, Ni, Zn, Cu, Co) 1-x O high-entropy oxide as anode material for lithium ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 743-753. |
[12] | Yiming YAO, Weiling LUAN, Ying CHEN, Min SUN. Recent progress in aging degradation of lithium-ion battery materials via in-situ optical microscopy [J]. Energy Storage Science and Technology, 2023, 12(3): 777-791. |
[13] | Zhifu WANG, Wei LUO, Yuan YAN, Song XU, Wenmei HAO, Conglin ZHOU. Fault diagnosis of lithium-ion battery sensors using GAPSO-FNN [J]. Energy Storage Science and Technology, 2023, 12(2): 602-608. |
[14] | Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating [J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. |
[15] | Fan YANG, Jiarui HE, Ming LU, Lingxia LU, Miao YU. SOC estimation of lithium-ion batteries based on BP-UKF algorithm [J]. Energy Storage Science and Technology, 2023, 12(2): 552-559. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||