Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (5): 1570-1588.doi: 10.19799/j.cnki.2095-4239.2023.0093
• New Energy Storage Technologies • Previous Articles Next Articles
Kangkang QU(), Yahua LIU(), Die HONG, Zhaoxi SHEN, Xiaozhao HAN, Xu ZHANG
Received:
2023-02-22
Online:
2023-05-05
Published:
2023-05-29
Contact:
Yahua LIU
E-mail:qukangkang1999@163.com;liuyahua@hfut.edu.cn
CLC Number:
Kangkang QU, Yahua LIU, Die HONG, Zhaoxi SHEN, Xiaozhao HAN, Xu ZHANG. Research progress on positive electrolytes for neutral aqueous organic redox flow battery[J]. Energy Storage Science and Technology, 2023, 12(5): 1570-1588.
Table 1
Molecular structure, solubility, potential, theoretical capacitance, diffusion coefficient (D), reaction rate constant (k0), and literature sources of ferrocene-based cathode electrolytes"
名称 | 分子结构 | 溶解度/(mol/L) | 电势E1/2 /V | 理论比容量/(Ah/L) | D/(cm2/s) | k0/(cm/s) | 能量效率 EE | 电压效率 VE | 文献出处 |
---|---|---|---|---|---|---|---|---|---|
FcNCl | 4 | 0.61 (vs NHE) | 107.2 | 3.74×10-6 | 3.66×10-5 | 72% (40 mA/cm2) | 72% (40 mA/cm2) | [ | |
FcN2Br2 | 3.1 | 0.61 (vs NHE) | 83.1 | 3.64×10-6 | 4.60×10-6 | 70% (40 mA/cm2) | 70% (40 mA/cm2) | [ | |
FC1N112-Br | 2.9 | 0.418—0.467 (vs Ag/AgCl) | 77.7 | / | / | / | / | [ | |
BTMAP-Fc | 1.9 | 0.39(vs SHE) | 50.9 | 6.2×10-10 | 1.40×10-2 | / | / | [ | |
1,1’FcDS | 0.3 (1 NaNO3, 0.5 EG) | 0.651 (vs Ag/AgCl) | 16.1 | 1.29×10-6 | / | 60% (25 mA/cm2) | / | [ | |
Fc-SO3NH4 | 0.22 (1 NaCl) | 0.38 (vs Ag/AgCl) | 5.9 | 3.79×10-8 | / | 63.75% (20 mA/cm2) | 66.99% (20 mA/cm2) | [ | |
HMFc⊂HP-β-CD | 0.28 | 0.52 (vs NHE) | 4.23 | 2.22×10-6 | 3.70×10-2 | / | / | [ |
Fig. 2
(a) The cyclic voltammograms of FcNCl (red line), FcN2Br2 (purple line), FcN (black line) and MV (blue line), and the dotted line is the cyclic voltammetry of 0.5 mol/L NaCl aqueous solution; (b) The 0.5 mol/L FcNCl/MV battery cycle test diagram at 60 mA/cm2: the internal illustration is a charge-discharge curves for a representative number of turns[44]"
Table 3
Molecular structure, solubility, potential, theoretical capacitance, diffusion coefficient (D), reaction rate constant (k0), and literature sources of TEMPO-based cathode electrolytes"
名称 | 分子结构 | 溶解度/(mol/L) | 电势E1/2/V | 理论电容量/(Ah/L) | D/(cm2/s) | k0/(cm/s) | 能量效率EE | 电压效率VE | 文献出处 |
---|---|---|---|---|---|---|---|---|---|
4-OH-TEMPO | 2.1 | 0.60 V (vs Ag/AgCl) | 56.3 | 2.95×10-5 | 2.6×10-4 | 62.5% (40 mA/cm2) | 62.1% (40 mA/cm2) | [ | |
4-SO3K-TEMPO | >1 (2 ZnCl2,1 NH4Cl) | 0.61 V (vs Ag/AgCl) | >26.7 | 2.98×10-6 | 1.91×10-3 | — | 52% (80 mA/cm2) | [ | |
4-COONa-TEMPO | 2.5 | 0.60 V (vs Ag/AgCl) | 67 | 5.45×10-6 | 2.1×10-2 | 64% (40 mA/cm2) | — | [ | |
TEMPTMA | 3.2 | 0.79 (vs Ag/AgCl) | 85.8 | 4.8×10-6 | 4.2×10-2 | 50% (70 mA/cm2) | — | [ | |
TMAP-TEMPO | 4.62 | 0.81 V (vs SHE) | 123.8 | 3.48×10-6 | 1.02×10-2 | 93.41% (10 mA/cm2) | — | [ | |
N2-TEMPO | 3.0 | >0.80 V (vs SHE) | 80.4 | 5.15×10-6 | — | 70.3% (40 mA/cm2) | — | [ | |
Ploy(TEMPO) | — | 0.70 V (vs Ag/AgCl) | — | 7.0×10-8 | 4.1×10-4 | 75% (40 mA/cm2) | — | [ | |
1-methyl-imidazolium functio-nalized TEMPO | — | 0.71 V (vs Ag/AgCl) | — | — | — | 93.7% (1.25 mA/cm2) | 97.7% (1.25 mA/cm2) | [ | |
(TPABPy)Cl3 | >1.5 | 0.967 V (vs SHE) | >37.6 | 2.97×10-6 | 7.50×10-2 | 70.6% (60 mA/cm2) | 71.1% (60 mA/cm2) | [ | |
Pyr-TEMPO | >3.35 | 0.81 V (vs SHE) | >89.8 | 4.07×10-6 | 1.42×10-2 | 84% (40 mA/cm2) | — | [ | |
PSS-TEMPO | >2.0 | 0.805 V (vs SHE) | >53.6 | 3.36×10-6 | 5.29×10-3 | 80% (40 mA/cm2) | — | [ |
Fig. 20
(a) Synthetic routes of PSS-TEMPO; (b) the cycle testing results of 0.20 mol/L K3Fe(CN)6/0.15 PSS-TEMPO AORFB at 40 mA/cm2, the internal illustration is the charge-discharge curves of a representative number of turns; (c) CV curves of PSS-TEMPO (red) in 1 mol/L NaCl; (d) 1H NMR spectra of PSS-TEMPO catholyte before and after battery cycling; (e) ESI-MS profile of PSS-TEMPO catholyte after battery cycling[67]"
Table 4
Capacity retention rates of several typical TEMPO cathode electrolytes"
正极电解质 | 负极电解质 | 正极电解质浓度/(mol/L) | 容量保持率(每次) | 文献 出处 |
---|---|---|---|---|
4-OH-TEMPO | MV | 0.1 | 99.99% | [ |
4-SO3K-TEMPO | ZnCl2 | 0.6 | 99.94% | [ |
TMAP-TEMPO | BTMAP-Vi | 0.1 | 99.993% | [ |
N2-TEMPO | (NPr)2V | 1.0 | 99.975% | [ |
(TPABPy)Cl3 | BTMAP-Vi | 1.5 | 99.98% | [ |
Pyr-TEMPO | [PyrPV]Cl4 | 0.2 | 99.96% | [ |
PSS-TEMPO | K3Fe(CN)6 | 0.15 | 99.988% | [ |
1 | JIN S, SHAO Y Q, GAO X S, et al. Designing interphases for practical aqueous zinc flow batteries with high power density and high areal capacity[J]. Science Advances, 2022, 8(39): doi: 10.1126/sciadv.abq4456. |
2 | 2021年全国电力工业统计数据发布[N]. 国家电网报, 2022-01-27(1). |
3 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
4 | SERVICE R F. Advances in flow batteries promise cheap backup power[J]. Science, 2018, 362(6414): 508-509. |
5 | LIN K X, CHEN Q, GERHARDT M R, et al. Alkaline quinone flow battery[J]. Science, 2015, 349(6255): 1529-1532. |
6 | SINGH V, KIM S, KANG J, et al. Aqueous organic redox flow batteries[J]. Nano Research, 2019, 12(9): 1988-2001. |
7 | ZHAO E W, LIU T, JÓNSSON E, et al. In situ NMR metrology reveals reaction mechanisms in redox flow batteries[J]. Nature, 2020, 579(7798): 224-228. |
8 | PERRY M L. BATTERIES. Expanding the chemical space for redox flow batteries[J]. Science, 2015, 349(6255): 1452. |
9 | 夏力行, 刘昊, 刘琳, 等. 有机氧化还原液流电池的研究进展[J]. 电化学, 2018, 24(5): 466-487. |
XIA L (H /X), LIU H, LIU L, et al. Recent progresses in organic redox flow batteries[J]. Journal of Electrochemistry, 2018, 24(5): 466-487. | |
10 | 杨霖霖, 王少鹏, 倪蕾蕾, 等. 新型液流电池研究进展[J]. 上海电气技术, 2015, 8(1): 46-49. |
YANG L L, WANG S P, NI L L, et al. The progression on the development of new redox flow batteries[J]. Journal, 2015, 8(1): 46-49. | |
11 | SÁNCHEZ-DÍEZ E, VENTOSA E, GUARNIERI M, et al. Redox flow batteries: Status and perspective towards sustainable stationary energy storage[J]. Journal of Power Sources, 2021, 481: doi:10.1016/j.jpowsour.2020.228804. |
12 | ARCHANA K S, SURESH S, RAGUPATHY P, et al. Investigations on new Fe-Mn redox couple based aqueous redox flow battery[J]. Electrochimica Acta, 2020, 345: doi: 10.1016/j.electacta.2020. 136245. |
13 | JEENA C B, ELSA P, MOLY P P, et al. A dendrite free Zn‐Fe hybrid redox flow battery for renewable energy storage[J]. Energy Storage, 2021, 4: doi: 10.1002/est2.275. |
14 | SHIN M, NOH C, KWON Y. Stability enhancement for all‐iron aqueous redox flow battery using iron-3-[bis(2‐hydroxyethyl) amino]-2-hydroxy propane sulfonic acid complex and ferrocyanide as redox couple[J]. International Journal of Energy Research, 2021, 46: 6866-6875. |
15 | SHOU-GUANG Y, SUN X F, XIAO M, et al. Optimization analysis of the internal structure of flow-assisted zinc-nickel battery driven by a propeller[J]. Advances in Mechanical Engineering, 2019, 11(2): 1-8. |
16 | ZHEN Y H, ZHANG C J, YUAN J S, et al. A high-performance all-iron non-aqueous redox flow battery[J]. Journal of Power Sources, 2020, 445: doi: 10.1016/j.jpowsour.2019.227331. |
17 | HU J, YUE M, ZHANG H M, et al. A boron nitride nanosheets composite membrane for a long-life zinc-based flow battery[J]. Angewandte Chemie (International Ed in English), 2020, 59(17): 6715-6719. |
18 | XU Z Y,WU M C. Toward dendrite-free deposition in zinc-based flow batteries: status and prospects[J]. Batteries, 2022, 8: doi: 10.3390/batteries8090117. |
19 | KHOR A, LEUNG P, MOHAMED M R, et al. Review of zinc-based hybrid flow batteries: From fundamentals to applications[J]. Materials Today Energy, 2018, 8: 80-108. |
20 | MUNDARAY E, SÁEZ A, SOLLA-GULLÓN J, et al. New insights into the performance of an acid-base electrochemical flow battery[J]. Journal of Power Sources, 2021, 506: doi: 10.1016/j.jpowsour. 2021.230233. |
21 | ANDREWS J, SEIF MOHAMMADI S. Towards a 'proton flow battery': Investigation of a reversible PEM fuel cell with integrated metal-hydride hydrogen storage[J]. International Journal of Hydrogen Energy, 2014, 39(4): 1740-1751. |
22 | LIANG Q, CHEN F M, WANG S F, et al. An organic flow desalination battery[J]. Energy Storage Materials, 2019, 20: 203-207. |
23 | LIU Y, CHEN Q, SUN P, et al. Organic electrolytes for aqueous organic flow batteries[J]. Materials Today Energy, 2021, 20: doi: 10.1016/j.mtener.2020.100634. |
24 | ZHANG C K, LI X F. Perspective on organic flow batteries for large-scale energy storage[J]. Current Opinion in Electrochemistry, 2021, 30: doi:10.1016/j.coelec.2021.100836. |
25 | DUAN W, LI B, LU D, et al. Towards an all-vanadium redox flow battery with higher theoretical volumetric capacities by utilizing the VO2+/V3+ couple[J]. Journal of Energy Chemistry, 2018, 27: 1381-1385. |
26 | HSIEH W Y, LEU C H, WU C H, et al. Measurement of local current density of all-vanadium redox flow batteries[J]. Journal of Power Sources, 2014, 271: 245-251. |
27 | CHEN H, ZHANG X Y, ZHANG S R, et al. A comparative study of iron-vanadium and all-vanadium flow battery for large scale energy storage[J]. Chemical Engineering Journal, 2022, 429: doi: 10.1016/j.cej.2021.132403. |
28 | WEI X, NIE Z, LUO Q, et al. Nanoporous polytetrafluoroethylene/silica composite separator as a high-performance all-vanadium redox flow battery membrane[J]. Advanced Energy Materials, 2013, 3: 1215-1220. |
29 | 张华民. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望[J]. 储能科学与技术, 2022, 11(9): 2772-2780. |
ZHANG H M. Development, cost analysis considering various durations, and advancement of vanadium flow batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2772-2780. | |
30 | WILK A, SZYPULSKA-KOZIARSKA D, WISZNIEWSKA B. The toxicity of vanadium on gastrointestinal, urinary and reproductive system, and its influence on fertility and fetuses malformations[J]. Postepy Higieny i Medycyny Doswiadczalnej (Online), 2017, 71(0): 850-859. |
31 | 袁治章, 刘宗浩, 李先锋. 液流电池储能技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2944-2958. |
YUAN Z Z, LIU Z H, LI X F. Research progress of flow battery technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2944-2958. | |
32 | RAMAR A, WANG F M, FOENG R, et al. Organic redox flow battery: Are organic redox materials suited to aqueous solvents or organic solvents?[J]. Journal of Power Sources, 2023, 558: doi: 10.1038/s41586-021-03399-1. |
33 | HUSKINSON B, MARSHAK M P, SUH C, et al. A metal-free organic-inorganic aqueous flow battery[J]. Nature, 2014, 505(7482): 195-198. |
34 | WEI X, PAN W, DUAN W, et al. Materials and systems for organic redox flow batteries: status and challenges[J]. ACS Energy Letters, 2017, 2: 2187-2204. |
35 | TANG L, LEUNG P, MOHAMED M R, et al. Capital cost evaluation of conventional and emerging redox flow batteries for grid storage applications[J]. Electrochimica Acta, 2023, 437: doi: 10.1016/j.electacta.2022.141460. |
36 | NGUYEN T P, EASLEY A D, KANG N R, et al. Polypeptide organic radical batteries[J]. Nature, 2021, 593(7857): 61-66. |
37 | BEH EUGENE S, DIANA D P, GRACIA REBECCA L, et al. A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention[J]. ACS Energy Letters, 2017, 2(3): 639-644. |
38 | JIN M, FELL E M, VINA-LOPEZ L, et al. Near neutral pH redox flow battery with low permeability and long-lifetime phosphonated viologen active species[J]. Advanced Energy Materials, 2020, 10: doi: 10.1002/aenm.202000100. |
39 | 陈倩如. 水系有机液流电池正极电解质的制备及性能研究[D]. 合肥: 中国科学技术大学, . |
CHEN Q R. Preparation and properties of cathode electrolyte for water-based organic flow battery[D]. Hefei: University of Science and Technology of China, . | |
40 | COSIMBESCU L, WEI X L, VIJAYAKUMAR M, et al. Anion-tunable properties and electrochemical performance of functionalized ferrocene compounds[J]. Scientific Reports, 2015, 5(1): 1-9. |
41 | GOODWIN C A P, GIANSIRACUSA M J, GREER S M, et al. Isolation and electronic structures of derivatized manganocene, ferrocene and cobaltocene anions[J]. Nature Chemistry, 2021, 13(3): 243-248. |
42 | MALISCHEWSKI M, ADELHARDT M, SUTTER J, et al. Isolation and structural and electronic characterization of salts of the decamethylferrocene dication[J]. Science, 2016, 353(6300): 678-682. |
43 | YAN Q H, ZHI N, YANG L, et al. A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode[J]. Scientific Reports, 2020, 10(1): 1-10. |
44 | HU B, DEBRULER C, RHODES Z, et al. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage[J]. Journal of the American Chemical Society, 2017, 139(3): 1207-1214. |
45 | KIM S, KIM D, HWANG G, et al. A bromide-ligand ferrocene derivative redox species with high reversibility and electrochemical stability for aqueous redox flow batteries[J]. Journal of Electroanalytical Chemistry, 2020, 869: doi: 10.1016/j.jelechem. 2020.114131. |
46 | ZHAO Z L, ZHANG B S, SCHRAGE B, et al. Investigations into aqueous redox flow batteries based on ferrocene bisulfonate[J]. ACS Applied Energy Materials, 2020, 3: 10270-10277. |
47 | YAO Y W, XU H, TIAN Z Z, et al. Simple-synthesized sulfonated ferrocene ammonium for aqueous redox flow batteries[J]. ACS Applied Energy Materials, 2021, 4: 8052-8058. |
48 | LI Y Y, XU Z A, LIU Y H, et al. Functioning water-insoluble ferrocenes for aqueous organic flow battery via host-guest inclusion[J]. ChemSusChem, 2021, 14(2): 745-752. |
49 | CHEN Q R, LI Y Y, LIU Y H, et al. Designer ferrocene catholyte for aqueous organic flow batteries[J]. ChemSusChem, 2021, 14(5): 1295-1301. |
50 | WINSBERG J, HAGEMANN T, JANOSCHKA T, et al. Redox-flow batteries: from metals to organic redox-active materials[J]. Angewandte Chemie International Edition, 2017, 56: 686-711. |
51 | 刘静嘉, 张宇婷, 蔡辉宇, 等. TEMPO及其衍生物在有机液流电池体系中的应用[J]. 大学化学, 2017, 32(11): 32-44. |
LIU J J, ZHANG Y T, CAI H Y, et al. TEMPO and lts derivatives in organic redox-flow batteries[J]. University Chemistry, 2017, 32(11): 32-44. | |
52 | HU X Q, QI X T, CHEN J R, et al. Catalytic N-radical cascade reaction of hydrazones by oxidative deprotonation electron transfer and TEMPO mediation[J]. Nature Communications, 2016, 7(1): 1-12. |
53 | YOKOI T, OTANI T, ISHII K. In vivo fluorescence bioimaging of ascorbic acid in mice: Development of an efficient probe consisting of phthalocyanine, TEMPO, and albumin[J]. Scientific Reports, 2018, 8(1): 1-9. |
54 | JI L L, DAI Y Y, YAN S M, et al. A fast electrochromic polymer based on TEMPO substituted polytriphenylamine[J]. Scientific Reports, 2016, 6(1): 1-9. |
55 | JIE X M, SHANG Y P, CHEN Z N, et al. Differentiation between enamines and tautomerizable imines in the oxidation reaction with TEMPO[J]. Nature Communications, 2018, 9(1): 1-10. |
56 | NUTTING J E, RAFIEE M, STAHL S S. Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and related N-oxyl species: Electrochemical properties and their use in electrocatalytic reactions[J]. Chemical Reviews, 2018, 118(9): 4834-4885. |
57 | LIU T, WEI X L, NIE Z, et al. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte[J]. Advanced Energy Materials, 2016, 6: doi: 10.1002/aenm.201501449. |
58 | JAN W, CHRISTIAN S, ALMUT S, et al. Aqueous 2, 2, 6, 6-tetramethylpiperidine-N-oxyl catholytes for a high-capacity and high current density oxygen-insensitive hybrid-flow battery[J]. ACS Energy Letters, 2017, 2(2): 411-416. |
59 | LIU B, TANG C W, JIANG H R, et al. Carboxyl-functionalized TEMPO catholyte enabling high-cycling-stability and high-energy-density aqueous organic redox flow batteries[J]. ACS Sustainable Chemistry & Engineering, 2021, 9: 6258-6265. |
60 | JANOSCHKA T, MARTIN N, HAGER M D, et al. An aqueous redox-flow battery with high capacity and power: The TEMPTMA/MV system[J]. Angewandte Chemie (International Ed in English), 2016, 55(46): 14427-14430. |
61 | LIU Y H, GOULET M A, TONG L C, et al. A long-lifetime all-organic aqueous flow battery utilizing TMAP-TEMPO radical[J]. Chem, 2019, 5: 1861-1870. |
62 | HU B, HU M W, LUO J, et al. A stable, low permeable TEMPO catholyte for aqueous total organic redox flow batteries [J]. Advanced Energy Materials, 2021, 12: doi: 10.1002/aenm.202102577. |
63 | JANOSCHKA T, MARTIN N, MARTIN U, et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials[J]. Nature, 2016, 534(7607): S9-S10. |
64 | CHANG Z J, HENKENSMEIER D, CHEN R Y. Shifting redox potential of nitroxyl radical by introducing an imidazolium substituent and its use in aqueous flow batteries[J]. Journal of Power Sources, 2019, 418: 11-16. |
65 | HU S Z, WANG L W, YUAN X Z, et al. Viologen-decorated TEMPO for neutral aqueous organic redox flow batteries[J]. Energy Material Advances, 2021, 2021: 1-8. |
66 | PAN M G, GAO L Z, LIANG J C, et al. Reversible redox chemistry in pyrrolidinium‐based TEMPO radical and extended viologen for high-voltage and long-life aqueous redox flow batteries[J]. Advanced Energy Materials, 2022, 12: doi: 10.1002/aenm.202103478. |
67 | GAO M Q, SALLA M, SONG Y X, et al. High-power near-neutral aqueous all organic redox flow battery enabled with a pair of anionic redox species[J]. Angewandte Chemie (International Ed in English), 2022, 61(41): doi: 10.1002/anie.202208223. |
68 | LUO J, HU B, HU M W, et al. Status and prospects of organic redox flow batteries toward sustainable energy storage[J]. ACS Energy Letters, 2019, 4(9): 2220-2240. |
69 | WINSBERG J, STOLZE C, MUENCH S, et al. TEMPO/phenazine combi-molecule: a redox-active material for symmetric aqueous redox-flow batteries[J]. ACS Energy Letters, 2016, 1: 976-980. |
70 | JANOSCHKA T, FRIEBE C, HAGER M D, et al. An approach toward replacing vanadium: A single organic molecule for the anode and cathode of an aqueous redox-flow battery[J]. ChemistryOpen, 2017, 6(2): 216-220. |
71 | ZHU Y Z, YANG F, NIU Z H, et al. Enhanced cyclability of organic redox flow batteries enabled by an artificial bipolar molecule in neutral aqueous electrolyte[J]. Journal of Power Sources, 2019, 417: 83-89. |
72 | HEILAND N, CIDARÉR C, ROHR C, et al. Design and evaluation of a boron dipyrrin electrophore for redox flow batteries[J]. ChemSusChem, 2017, 10(21): 4215-4222. |
73 | HAGEMANN T, WINSBERG J, HÄUPLER B, et al. A bipolar nitronyl nitroxide small molecule for an all-organic symmetric redox-flow battery[J]. NPG Asia Materials, 2017, 9(1): e340. |
74 | TAYLOR P, MILLER J L, BUTLER P. Energy storage opportunities analysis phase ii final report a study for the doe energy storage systems program[N]. Sandia National Laboratories, 2002-05-01. |
75 | 朱兆武, 张旭堃, 苏慧, 等. 全钒液流电池提高电解液浓度的研究与应用现状[J]. 储能科学与技术, 2022, 11(11): 3439-3446. |
ZHU Z W, ZHANG X K, SU H, et al. Research and application of increasing electrolyte concentration in all vanadium redox flow battery[J]. Energy Storage Science and Technology, 2022, 11(11): 3439-3446. |
[1] | Lei LEI, Peng GAO, Nana FENG, Kunpeng CAI, Hai ZHANG, Yang ZHANG. The influences of multifactors in the synthesis progress on the characteristics of lithium lanthanum zirconate solid electrolytes [J]. Energy Storage Science and Technology, 2023, 12(5): 1625-1635. |
[2] | Jintao LI, Yue MU, Jing WANG, Jingyi QIU, Hai MING. Investigation of the structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1636-1654. |
[3] | Xuanchen WANG, Da WANG, Zhaomeng LIU, Xuanwen GAO, Wenbin LUO. Research progress and prospect of potassium ion battery electrolyte [J]. Energy Storage Science and Technology, 2023, 12(5): 1409-1426. |
[4] | Weibin HUANG, Biao ZHANG, Jincheng FAN, Wei YANG, Hanbo ZOU, Shengzhou CHEN. Preparation and modification of ZIF-8 composite PEO based solid electrolyte [J]. Energy Storage Science and Technology, 2023, 12(4): 1083-1092. |
[5] | Kaiyuan XUE, Yan WANG, Junwei LANG, Tian HE, Zuoqiang DAI, Zongmin ZHENG. The progress in applications of dicationic ionic liquids in the energy storage and conversion system [J]. Energy Storage Science and Technology, 2023, 12(3): 808-821. |
[6] | Xin SHEN, Rui ZHANG, Chenzi ZHAO, Peng WU, Yutong ZHANG, Jundong ZHANG, Lizhen FAN, Quanbing LIU, Aibing CHEN, Qiang ZHANG. Recent advances in mechano-electrochemistry in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2781-2797. |
[7] | Jinghua WU, Jing YANG, Gaozhan LIU, Zhiyan WANG, Zhihua ZHANG, Hailong YU, Xiayin YAO, Xuejie HUANG. Review and prospective of solid-state lithium batteries in the past decade (2011—2021) [J]. Energy Storage Science and Technology, 2022, 11(9): 2713-2745. |
[8] | Pengbo ZHAI, Dongmei CHANG, Zhijie BI, Ning ZHAO, Xiangxin GUO. Research progress on key interfacial issues in lithium lanthanum zirconium oxide-based solid-state [J]. Energy Storage Science and Technology, 2022, 11(9): 2847-2865. |
[9] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[10] | XIE Chenglu, HUANG Xiankun, KANG Lixia, LIU Yongzhong. Electrocatalytic performances of Ru nanoparticles supported on carbon nanotubes by colloidal solution for synthetic ammonia [J]. Energy Storage Science and Technology, 2022, 11(6): 1947-1956. |
[11] | Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes [J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235. |
[12] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
[13] | Xiubo ZHANG, Chang YU, Jinhe YU, Yingbin LIU, Yuanyang XIE, Jianjian WANG, Shuqin LAN, Jieshan QIU. Recent progress of polymer electrolytes for supercapacitors under extreme environments [J]. Energy Storage Science and Technology, 2022, 11(12): 3808-3818. |
[14] | Yue SU, Xuhua LIU, Fanglei ZENG, Yurong REN, Bencai LIN. Preparation and properties of polyvinylidene fluoride/polyvinylidene fluoride sulfonate lithium/lithium salt composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(6): 2069-2076. |
[15] | Shiying ZHAN, Dongxu YU, Nan CHEN, Fei DU. Advances of aqueous batteries with non-metallic cation charge carriers [J]. Energy Storage Science and Technology, 2021, 10(6): 2144-2155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||