Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (5): 1516-1552.doi: 10.19799/j.cnki.2095-4239.2023.0330
• Special Review • Previous Articles Next Articles
Haisheng CHEN1(), Hong LI2, Yujie XU1, Man CHEN3, Liang WANG1, Xingjian DAI1, Dehou XU4, Xisheng TANG5, Xianfeng LI6, Yongsheng HU2, Yanwei MA5, Yu LIU1, Wei SU7, Qingsong WANG8, Jun CHEN9, Ping ZHUO10, Liye XIAO5, Xuezhi ZHOU1, Ziping FENG11, Kai JIANG12, Haijun YU13, Yongbing TANG14, Renjie CHEN15, Yatao LIU16, Yuxin ZHANG1, Xipeng LIN1, Huan GUO1, Han ZHANG1, Changkun ZHANG6, Dongxu HU1, Xiaohui RONG2, Xiong ZHANG5, Kaiqiang JIN8, Lihua JIANG8, Yumin PENG3, Shiqi LIU13, Yilin ZHU1, Xing WANG1, Xin ZHOU1, Xuewu OU14, Quanquan PANG16, Zhenhua YU17, Wei LIU17, Fen YUE17, Zhen LI17, Zhen SONG17, Zhifeng WANG5, Wenji SONG11, Haibo LIN18, Jiecai LI18, Bin YI7, Fujun LI9, Xinhui PAN19, Li LI15, Yiming MA3, Huang LI8
Received:
2023-05-09
Revised:
2023-05-15
Online:
2023-05-05
Published:
2023-05-29
Contact:
Haisheng CHEN, Hong LI, Yujie XU, Man CHEN, Liang WANG, Xingjian DAI, Dehou XU, Xisheng TANG, Xianfeng LI, Yongsheng HU, Yanwei MA, Yu LIU, Wei SU, Qingsong WANG, Jun CHEN, Ping ZHUO, Liye XIAO, Xuezhi ZHOU, Ziping FENG, Kai JIANG, Haijun YU, Yongbing TANG, Renjie CHEN, Yatao LIU
E-mail:chen_hs@iet.cn
CLC Number:
Haisheng CHEN, Hong LI, Yujie XU, Man CHEN, Liang WANG, Xingjian DAI, Dehou XU, Xisheng TANG, Xianfeng LI, Yongsheng HU, Yanwei MA, Yu LIU, Wei SU, Qingsong WANG, Jun CHEN, Ping ZHUO, Liye XIAO, Xuezhi ZHOU, Ziping FENG, Kai JIANG, Haijun YU, Yongbing TANG, Renjie CHEN, Yatao LIU, Yuxin ZHANG, Xipeng LIN, Huan GUO, Han ZHANG, Changkun ZHANG, Dongxu HU, Xiaohui RONG, Xiong ZHANG, Kaiqiang JIN, Lihua JIANG, Yumin PENG, Shiqi LIU, Yilin ZHU, Xing WANG, Xin ZHOU, Xuewu OU, Quanquan PANG, Zhenhua YU, Wei LIU, Fen YUE, Zhen LI, Zhen SONG, Zhifeng WANG, Wenji SONG, Haibo LIN, Jiecai LI, Bin YI, Fujun LI, Xinhui PAN, Li LI, Yiming MA, Huang LI. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552.
Table 1
Progress of China's energy storage technology and demonstration in 2022"
技术类型 | 关键技术进展 | 集成示范进展 |
---|---|---|
抽水蓄能 | ①大型全功率变速恒频抽水蓄能机组变速抽水机组;②13叶片、9叶片等新型转轮水泵水轮机;③大容量蓄能机组导水机构数字化虚拟预装技术;④多厂站集中监控技术等 | ①百万千瓦级抽水蓄能电站成套设备实现国产化;②我国首台全功率变速恒频抽蓄机组成功投运;③我国首个单机40万千瓦全功率变速恒频抽蓄机组启动 |
压缩空气储能 | ①突破300 MW多级膨胀机、高效蓄热换热器等关键技术;②首台100 MW系统压缩机和膨胀机完成第三方测试;效率分别为87.5%和91.8%;③首台100 MW系统蓄热器完成第三方测试,蓄热效率超过98% | ①山东肥城10 MW先进CAES示范项目商业运行1周年;②江苏金坛60 MW压缩空气储能并网发电;③河北张家口国际首套100 MW先进压缩空气储能示范项目顺利并网发电;④山东肥城二期300 MW、江苏淮安465 MW工程项目启动 |
储热储冷 | ①多种基于多孔材料和石墨为骨架的复合相变和定形相变储热材料完成制备;②多通道结构相变储热单元技术;③储热系统耦合燃煤发电系统技术;④新一代直接蒸发冰浆技术 | ①相变储热等蓄热技术应用于冬奥会场馆;②甘肃敦煌国内最大的电极锅炉储热供暖项目;③江苏靖江首个熔盐储热75 MWh火电调峰调频项目;④青海贵南高海拔地区单体容量最大的固体蓄热式电锅炉投运;⑤中铁冷链标准化联运无源冷藏集装箱提供移动储冷解决方案 |
飞轮储能 | ①300 kW磁悬浮永磁同步电机技术;②飞轮储能结合其他储能实现短时高功率、长时大能量的复合储能技术;③飞轮阵列协调控制技术 | ①2 MW飞轮储能在铁路牵引回收制动能量示范;②MW级飞轮阵列在青海风光储项目实现示范;③两台1 MW飞轮储能在青岛地铁3号线顺利并网 |
铅蓄电池 | ①高电化学活性和铅炭兼容的新型炭材料;②提高电池容量等性能的优质电解液添加剂 | ①10 MW/97.312 MW用户侧储能项目工程投运;②100.8 MW/1061.683 MWh铅碳储能电站完成招标 |
锂离子电池 | ①预锂化技术、液冷技术、超大电池技术等;②高能量密度半固态电池技术;③硫基电池、锰基电池技术等 | ①宁德时代推出长寿命液冷储能集装箱EnerC;②宁夏液冷型100 MW/200 MWh储能电站成功并网;③混合固液锂电池首次实现MWh级的应用示范等 |
液流电池 | ①高功率60 kW全钒液流电堆技术;②非氟阳离子传导膜技术;③30 kW级锌溴液流电池电堆集成技术 | ①全球首套100 MW/400 MWh全液流电池储能调峰电站正式并网发电;②1 MW级铁铬液流电池储能系统进入调试阶段;③多个100 MW级产线项目开工建设 |
钠离子电池 | ①正负极材料制备及放大技术;②电解液/隔膜体系优选技术;③高安全、高倍率和宽温电芯设计制造技术④电池的安全性设计与评价技术等 | ①全球首款12.6 kWh钠离子电池家用储能系统发布;②30 MW/60 MWh钠离子电池储能系统完成招标;③率先实现了钠离子电池材料和GWh电芯量产 |
超级电容器 | ①活性炭制备技术、隔膜制备技术、器件制备技术、模组快充技术;②高电压宽温区微型电容器高效运行技术;③能量型锂离子超级电容技术;④高电压耐热性超级电容技术 | ①1 MW/0.1 MWh超级电容混合储能系统示范运行;②超级电容和燃料电池复合组成的全球首列时速160公里列车研制成功;③世界首艘纯超级电容动力渡轮“新生态”号运行 |
储能新技术 | ①重力储能技术;②热泵储电技术;③压缩二氧化碳;④液态金属技术;⑤双离子电池技术;⑥有机储能电池技术等 | — |
集成技术 | ①电池功率变换拓扑技术;②电池系统智能诊断技术和内功率分配技术;③高效智能温控技术和液冷技术;④规模化集群控制技术 | ①高效智能风冷和浸没式液冷两种高能量密度1500 V磷酸铁锂储能系统示范;②采用构网型储能变流器的储能示范项目应用 |
消防安全技术 | ①纳米强化、微热管、混合式等热管理新技术;②热失控火灾预警技术;③热失控抑制及灭火技术,相变隔热、全氟己酮、液氮灭火技术等 | ①多参数融合预警技术和全氟己酮补偿式喷射技术示范;②管网式七氟丙烷灭火系统结合供水管网的自动喷水灭火系统 |
1 | 陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术, 2021, 10(5): 1477-1485. |
CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485. | |
2 | 国家发改委 国家能源局关于印发《"十四五"新型储能发展实施方案》的通知[EB/OL]. (2022-01-29) https://www.ndrc.gov.cn/xxgk/zcfb/tz/202203/t20220321_1319772_ext.html. |
3 | 李先锋, 张洪章, 郑琼, 等. 能源革命中的电化学储能技术[J]. 中国科学院院刊, 2019, 34(4): 443-449. |
LI X F, ZHANG H Z, ZHENG Q, et al. Electrochemical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 443-449. | |
4 | 陈海生, 凌浩恕, 徐玉杰. 能源革命中的物理储能技术[J]. 中国科学院院刊, 2019, 34(4): 450-459. |
CHEN H S, LING H S, XU Y J. Physical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 450-459. | |
5 | 陈海生. "双碳"目标下的储能发展[J]. 中国电力企业管理, 2021(22): 23-24. |
CHEN H S. Energy storage development under the goal of "double carbon"[J]. China Power Enterprise Management, 2021(22): 23-24. | |
6 | 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076. |
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. | |
7 | 中国政府网. 国家发展改革委、国家能源局部署加快"十四五"时期抽水蓄能项目开发建设[EB/OL]. [2022-04-07]. http://www.gov.cn/xinwen/2022-04/07/content_5683819.htm. |
8 | CHEN P, DENG Y M, ZHANG X G, et al. Degradation trend prediction of pumped storage unit based on MIC-LGBM and VMD-GRU combined model[J]. Energies, 2022, 15(2): 605. |
9 | REN Y, ZHANG L L, CHEN J T, et al. Noise reduction study of pressure pulsation in pumped storage units based on sparrow optimization VMD combined with SVD[J]. Energies, 2022, 15(6): 2073. |
10 | 唐拥军, 倪晋兵, 肖业祥. 基于噪声分析的抽水蓄能机组运行预警技术研究[J]. 水电与抽水蓄能, 2022, 8(3): 35-38, 52. |
TANG Y J, NI J B, XIAO Y X. Study on operation warning technique for pump storage unit based on analysis of noise[J]. Hydropower and Pumped Storage, 2022, 8(3): 35-38, 52. | |
11 | 朱莎莎, 杨光, 林雯雯. 抽水蓄能电站甩负荷实测数据处理与分析[J]. 水利规划与设计, 2022(5): 78-85, 121. |
ZHU S S, YANG G, LIN W W. Processing and analysis of measured load rejection data of pumped storage power station[J]. Water Resources Planning and Design, 2022(5): 78-85, 121. | |
12 | LUO Y, SHAO D J, ZHAO J J, et al. Stability analysis of Tianchi pumped storage power station connected to central China power grid[C]//2022 7th Asia conference on power and electrical engineering (ACPEE). April 15-17, 2022, Hangzhou, China. IEEE, 2022: 606-612. |
13 | 冯陈, 周大庆, 郑源, 等. 基于精细化建模的抽水蓄能机组低水头背靠背启动多目标优化[J]. 中国电机工程学报, 2023, 43(8): 3059-3071. |
FENG C, ZHOU D Q, ZHENG Y, et al. Multi-objective optimization of back-to-back starting process for pumped storage units at low head area based on refined model[J]. Proceedings of the CSEE, 2023, 43(8): 3059-3071. | |
14 | 吴伟亮, 刘细平, 黄朝志, 等. 大型抽水蓄能机组静止变频起动控制技术研究[J]. 水电能源科学, 2022, 40(6): 196-200, 206. |
WU W L, LIU X P, HUANG C Z, et al. Research on static frequency start-up control technology for large pumped storage unit[J]. Water Resources and Power, 2022, 40(6): 196-200, 206. | |
15 | 陈伟伟, 张增强, 张高航, 等. 计及需求响应及抽水蓄能的含风电系统鲁棒机组组合[J]. 电力工程技术, 2022, 41(2): 75-82. |
CHEN W W, ZHANG Z Q, ZHANG G H, et al. Robust unit commitment of power systems integrated wind power considering demand response and pumped storage units[J]. Electric Power Engineering Technology, 2022, 41(2): 75-82. | |
16 | JI L Y, LI C B, LI X P, et al. Multi-method combination site selection of pumped storage power station considering power structure optimization[J]. Sustainable Energy Technologies and Assessments, 2022, 49: doi: 10.1016/j.seta.2021.101680. |
17 | MA S Y, ZHOU B Y, WANG Q W, et al. Study on technologies and applications of joint participation of pumped storage and electrochemical energy storage in power grid frequency modulation[C]//2022 5th Asia Conference on Energy and Electrical Engineering (ACEEE). July 8-10, 2022, Kuala Lumpur, Malaysia. IEEE, 2022: 73-78. |
18 | MISHRA A K, SINGH B, KIM T. An efficient and credible grid-interfaced solar PV water pumping system with energy storage[J]. IEEE Journal of Photovoltaics, 2022, 12(3): 880-887. |
19 | 罗远翔, 李鑫明, 潘超, 等. 含风电的双馈抽水蓄能机组协调调频策略[J]. 电力系统保护与控制, 2022, 50(17): 76-85. |
LUO Y X, LI X M, PAN C, et al. Coordinated frequency modulation strategy of doubly fed pumped storage units with wind power[J]. Power System Protection and Control, 2022, 50(17): 76-85. | |
20 | 姬嘉明. 考虑抽水蓄能电站的风光互补发电系统的优化调度研究[D]. 郑州: 华北水利水电大学, 2022. |
JI J M. Study on optimal dispatching of wind-solar hybrid power generation system considering pumped storage power station[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2022. | |
21 | LI C P, LI J, LI J H, et al. Optimization strategy of secondary frequency modulation based on dynamic loss model of the energy storage unit[J]. Journal of Energy Storage, 2022, 51: doi: 10.1016/j.est.2022.104425. |
22 | LI Y, LI O T, WU F, et al. Coordinated multi-objective capacity optimization of wind-photovoltaic-pumped storage hybrid system[J]. Energy Reports, 2022, 8: 1303-1310. |
23 | 桑林卫, 卫璇, 许银亮, 等. 抽水蓄能助力风光稳定外送的最佳配置策略[J]. 中国电力, 2022, 55(12): 86-90, 123. |
SANG L W, WEI X, XU Y L, et al. The optimal allocation strategy of pumped storage for the collaborative operation with wind/solar generation[J]. Electric Power, 2022, 55(12): 86-90, 123. | |
24 | CHANG Y H, LIU S Z, WANG L, et al. Research on low-carbon economic operation strategy of renewable energy-pumped storage combined system[J]. Mathematical Problems in Engineering, 2022, 2022: 1-13. |
25 | LUO Y X, WANG Y H, LIU C, et al. Two-stage robust optimal scheduling of wind power-photovoltaic-thermal power-pumped storage combined system[J]. IET Renewable Power Generation, 2022, 16(13): 2881-2891. |
26 | 贾鑫, 蔡卫江, 于爽, 等. 可变速抽水蓄能机组协调控制单元设计与功能研究[C]//中国水力发电工程学会自动化专委会2022年年会暨全国水电厂智能化应用学术交流会会议论文集. 南京: 中国水力发电工程学会自动化专业委员会, 2022: 176-180. |
27 | DENG Y W, WANG P F, MORABITO A, et al. Dynamic analysis of variable-speed pumped storage plants for mitigating effects of excess wind power generation[J]. International Journal of Electrical Power & Energy Systems, 2022, 135: doi: 10.1016/j.ijepes. 2021.107453. |
28 | 赵志高, 杨建东, 董旭柱, 等. 基于动态实验的双馈抽水蓄能机组空载特性与变速演化[J]. 中国电机工程学报, 2022, 42(20): 7439-7451. |
ZHAO Z G, YANG J D, DONG X Z, et al. No-load characteristics and variable speed evolution of doubly-fed pumped storage unit based on dynamic experiment platform[J]. Proceedings of the CSEE, 2022, 42(20): 7439-7451. | |
29 | 王博, 张金仙, 胡金明, 等. 可变速抽水蓄能电机振动和噪声优化分析[J]. 水电站机电技术, 2022, 45(2): 48-53. |
WANG B, ZHANG J X, HU J M, et al. Optimization analysis of vibration and noise of variable speed pumped storage motor[J]. Mechanical & Electrical Technique of Hydropower Station, 2022, 45(2): 48-53. | |
30 | 乔照威, 孙玉田, 戈宝军. 可变速抽水蓄能发电电动机功率特性分析[J]. 大电机技术, 2022(3): 8-13. |
QIAO Z W, SUN Y T, GE B J. Power performance analysis of variable speed pumped storage generator motor[J]. Large Electric Machine and Hydraulic Turbine, 2022(3): 8-13. | |
31 | CHEN Y H, XU W, LIU Y, et al. Modeling and transient response analysis of doubly-fed variable speed pumped storage unit in pumping mode[J]. IEEE Transactions on Industrial Electronics, 2023, 70(10): 9935-9947. |
32 | 陈亚红, 邓长虹, 刘玉杰, 等. 抽水工况双馈可变速抽蓄机组机电暂态建模及有功-频率耦合特性[J]. 中国电机工程学报, 2022, 42(3): 942-957. |
CHEN Y H, DENG C H, LIU Y J, et al. Electromechanical transient modelling and active power-frequency coupling characteristics of doubly-fed variable speed pumped storage under pumping mode[J]. Proceedings of the CSEE, 2022, 42(3): 942-957. | |
33 | CHEN Y H, XU W, LIU Y, et al. Small-signal system frequency stability analysis of the power grid integrated with type-II doubly-fed variable speed pumped storage[J]. IEEE Transactions on Energy Conversion, 2023, 38(1): 611-623. |
34 | SHI L J, LAO W J, WU F, et al. Frequency regulation control and parameter optimization of doubly-fed induction machine pumped storage hydro unit[J]. IEEE Access, 2022, 10: 102586-102598. |
35 | 滕军, 吴新平, 吴林波, 等. 海水抽水蓄能电站设计关键技术问题研讨[J]. 中国农村水利水电, 2022(1): 159-162. |
TENG J, WU X P, WU L B, et al. Research on the key technical problems in designing seawater pumped storage power stations[J]. China Rural Water and Hydropower, 2022(1): 159-162. | |
36 | 卢开放, 侯正猛, 孙伟, 等. 云南省矿井抽水蓄能电站潜力评估与建设关键技术[J]. 工程科学与技术, 2022, 54(1): 136-144. |
LU K F, HOU Z M, SUN W, et al. Potential evaluation and construction key technologies of pumped-storage power stations in mines of Yunnan Province[J]. Advanced Engineering Sciences, 2022, 54(1): 136-144. | |
37 | 北极星电力网. 国内首台全功率变速恒频抽蓄机组研制成功[EB/OL]. [2022-05-16]. https://news.bjx.com.cn/html/20220516/1225181.shtml. |
38 | 世纪新能源网. 2022年这8个抽蓄电站相继全面投产[EB/OL]. [2022-12-29]. https://www.ne21.com/news/show-174951.html. |
39 | 新浪财经. 2022年"水火核"重大新闻[EB/OL]. [2023-01-02]. https://finance.sina.com.cn/jjxw/2023-01-02/doc-imxyuyam6083081.shtml. |
40 | LV H N, CHEN Y P, WU J F, et al. Performance of isobaric adiabatic compressed humid air energy storage system with shared equipment and road-return scheme[J]. Applied Thermal Engineering, 2022, 211: doi: 10.1016/j.applthermaleng.2022.118440. |
41 | CAO Z, ZHOU S H, HE Y, et al. Numerical study on adiabatic compressed air energy storage system with only one ejector alongside final stage compression[J]. Applied Thermal Engineering, 2022, 216: doi: 10.1016/j.applthermaleng.2022.119071. |
42 | RAN P, ZHANG H Y, QIAO Y, et al. Thermodynamic analysis for a novel steam injection adiabatic compressed air energy storage hybrid system[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105424. |
43 | HUANG J J, XU Y J, GUO H, et al. Dynamic performance and control scheme of variable-speed compressed air energy storage[J]. Applied Energy, 2022, 325: doi: 10.1016/j.apenergy.2022.119338. |
44 | GUO H, XU Y J, HUANG L J, et al. Concise analytical solution and optimization of compressed air energy storage systems with thermal storage[J]. Energy, 2022, 258: doi: 10.1016/j.energy. 2022.124773. |
45 | HUANG L J, GUO H, XU Y J, et al. Influence of design point on off-design and cycling performance of compressed air energy storage systems-from key processes to the whole system[J]. Journal of Energy Storage, 2023, 57: doi: 10.1016/j.est.2022.106181. |
46 | GUO H, XU Y J, HUANG L J, et al. Optimization strategy using corresponding-point methodology (CPM) concerning finite time and heat conduction rate for CAES systems[J]. Energy, 2023, 266: doi: 10.1016/j.energy.2022.126336. |
47 | 耿晓倩, 徐玉杰, 黄景坚, 等. 先进压缩空气储能系统全生命周期能耗及二氧化碳排放[J]. 储能科学与技术, 2022, 11(9): 2971-2979. |
GENG X Q, XU Y J, HUANG J J, et al. Life cycle energy consumption and carbon emissions of advanced adiabatic compressed air energy storage[J]. Energy Storage Science and Technology, 2022, 11(9): 2971-2979. | |
48 | LIN Z H, ZUO Z T, LI W, et al. Experimental and numerical analysis of the impeller backside cavity in a centrifugal compressor for CAES[J]. Energies, 2022, 15(2): 420. |
49 | MENG C, ZUO Z T, SUN J T, et al. Numerical study on the influence of shroud cavity in the high-pressure centrifugal compressor for compressed air energy storage system[J]. IOP Conference Series: Earth and Environmental Science, 2021, 804(3): doi: 10.1088/1755-1315/804/3/032018. |
50 | MENG C, ZUO Z T, SUN J T, et al. Internal inflow study on a high-pressure centrifugal compressor with shroud and backside cavity in a compressed air energy storage system[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2022, 236(7): 1418-1432. |
51 | SUN J T, ZUO Z T, LIANG Q, et al. Theoretical and experimental study on effects of wet compression on centrifugal compressor performance[J]. Applied Thermal Engineering, 2022, 212: doi: 10.1016/j.applthermaleng.2022.118163. |
52 | MENG C, ZUO Z T, GUO W B, et al. Experimental and numerical investigation on off-design performance of a high-pressure centrifugal compressor in compressed air energy storage system[J]. Journal of Energy Storage, 2022, 53: doi: 10.1016/j.est.2022.105081. |
53 | LI H Y, LI W, ZHANG X H, et al. Performance and flow characteristics of the liquid turbine for supercritical compressed air energy storage system[J]. Applied Thermal Engineering, 2022, 211: doi: 10.1016/j.applthermaleng.2022.118491. |
54 | SHAO Z Y, LI W, ZHU Y L, et al. Experimental investigation of intake and leakage performance for a shrouded radial turbine in the compressed air energy storage system[J]. Journal of Energy Storage, 2022, 52: doi: 10.1016/j.est.2022.104875. |
55 | HUANG G R, ZHU Y L, WANG X, et al. Flow characteristics of last-segment axial turbine adopted in compressed air energy storage system under low load and windage conditions[J]. International Journal of Energy Research, 2022, 46(15): 23908-23926. |
56 | HU S W, XU W Q, CAI M L, et al. Energy efficiency and power density analysis of a tube array liquid piston air compressor/expander for compressed air energy storage[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105674. |
57 | 李瑞雄, 邹瀚森, 姚尔人, 等. 液体活塞近等温压缩空气储能过程热力性能评估[J/OL]. 西安交通大学学报, 2023(5): 1-10. |
58 | XIONG J W, PAN X, ZHU Y, et al. Solidity optimization of compressed air energy storage turbine during off-design conditions[C]//2nd World Energy Conference and 7th UK Energy Storage Conference, BIRMINGHAM, UNITED KINGDOM, 2022. |
59 | QU Y L, WANG L, LIN X P, et al. Heat transfer characteristics of mixed convection in packed beds[J]. Chemical Engineering Science, 2022, 255: doi: 10.1016/j.ces.2022.117679. |
60 | 廖丹, 胡章茂, 王唯, 等. 立方体填充料结构内换热与流动特性[J]. 储能科学与技术, 2023, 12(3): 676-684. |
LIAO D, HU Z M, WANG W, et al. Research on heat transfer and flow characteristics of cubic fillers[J]. Energy Storage Science and Technology, 2023, 12(3): 676-684. | |
61 | 张志浩, 靳晓刚, 包恒兴, 等. 混合加热反应器内Ca(OH)2/CaO热化学储能体系实验[J]. 储能科学与技术, 2023, 12(1): 227-235. |
ZHANG Z H, JIN X G, BAO H X, et al. Experimental study of Ca(OH)2/CaO thermochemical energy storage in a mixed heating reactor[J]. Energy Storage Science and Technology, 2023, 12(1): 227-235. | |
62 | 葛刚强, 王焕然, 李瑞雄, 等. 压缩空气储能蓄热器性能分析和优化设计[J]. 西安交通大学学报, 2023, 57(1): 45-54. |
GE G Q, WANG H R, LI R X, et al. Performance analysis and optimization design of heat accumulator in compressed air energy storage[J]. Journal of Xi'an Jiaotong University, 2023, 57(1): 45-54. | |
63 | 吴玉庭, 寇真峰, 张灿灿, 等. 列管式固体氯化钠蓄冷换热器动态分布参数分析[J]. 储能科学与技术, 2022, 11(6): 1988-1995. |
WU Y T, KOU Z F, ZHANG C C, et al. Analysis of the dynamic distribution parameters of a solid sodium chloride column heat exchanger[J]. Energy Storage Science and Technology, 2022, 11(6): 1988-1995. | |
64 | HAN Y, CUI H, MA H L, et al. Temperature and pressure variations in salt compressed air energy storage (CAES) Caverns considering the air flow in the underground wellbore[J]. Journal of Energy Storage, 2022, 52: doi: 10.1016/j.est.2022.104846. |
65 | LI P, CHEN Z G, ZHOU X Z, et al. Temperature regulation model and experimental study of compressed air energy storage cavern heat exchange system[J]. Sustainability, 2022, 14(11): 6788. |
66 | LI Y, YU H, LUO X, et al. Full cycle modeling of inter-seasonal compressed air energy storage in aquifers[J]. Energy, 2022, 263: doi: 10.1016/j.energy.2022.125987. |
67 | QIN S K, XIA C C, ZHOU S W. Air tightness of compressed air storage energy Caverns with polymer sealing layer subjected to various air pressures[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022: doi: 10.1016/j.jrmge.2022.10.007. |
68 | RAN P, WANG Y, WANG Y S, et al. Thermodynamic, economic and environmental investigations of a novel solar heat enhancing compressed air energy storage hybrid system and its energy release strategies[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105423. |
69 | XUE X J, LV J Y, CHEN H, et al. Thermodynamic and economic analyses of a new compressed air energy storage system incorporated with a waste-to-energy plant and a biogas power plant[J]. Energy, 2022, 261: doi: 10.1016/j.energy.2022.125367. |
70 | XUE X J, LU D, LIU Y F, et al. Thermodynamic and economic analysis of new compressed air energy storage system integrated with water electrolysis and H2-Fueled solid oxide fuel cell[J]. Energy, 2023, 263: doi: 10.1016/j.energy.2022.126114. |
71 | ZHENG A H, CAO Z, XU Y J, et al. Analysis of hybrid Adiabatic Compressed Air Energy Storage-Reverse Osmosis desalination system with different topological structures[J]. Desalination, 2022, 530: doi: 10.1016/j.desal.2022.115667. |
72 | 李拴魁, 林原, 潘锋. 热能存储及转化技术进展与展望[J]. 储能科学与技术, 2022, 11(5): 1551-1562. |
LI S K, LIN Y, PAN F. Research progress in thermal energy storage and conversion technology[J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562. | |
73 | 姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9): 2746-2771. |
JIANG Z, ZOU B Y, CONG L, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771. | |
74 | LÜ H X, FENG D L, FENG Y H, et al. Effect and mechanism of doped graphene nanosheets on phase transition properties of sodium nitrate[J]. Acta Physica Sinica, 2022, 71(15): doi: 10.7498/aps.71.20220354. |
75 | LYU H X, FENG D L, FENG Y H, et al. Enhanced thermal energy storage of sodium nitrate by graphene nanosheets: Experimental study and mechanisms[J]. Journal of Energy Storage, 2022, 54: doi: 10.1016/j.est.2022.105294. |
76 | ZHANG S, JIN Y G, YAN Y Y. Depression of melting point and latent heat of molten salts as inorganic phase change material: Size effect and mechanism[J]. Journal of Molecular Liquids, 2022, 346: doi: 10.1016/j.molliq.2021.117058. |
77 | LIU Y L, DENG Y, ZHENG J L, et al. Micro mechanism of latent heat enhancement of polyethylene glycol/aminated modified palygorskite composite phase change materials[J]. Applied Clay Science, 2022, 228: doi: 10.1016/j.clay.2022.106641. |
78 | LV L Q, WANG J K, JI M T, et al. Effect of structural characteristics and surface functional groups of biochar on thermal properties of different organic phase change materials: Dominant encapsulation mechanisms[J]. Renewable Energy, 2022, 195: 1238-1252. |
79 | ZHANG G H, GUO Y Q, ZHANG B, et al. Preparation and control mechanism of nano-phase change emulsion with high thermal conductivity and low supercooling for thermal energy storage[J]. Energy Reports, 2022, 8: 8301-8311. |
80 | TIAN H Y, TANG J, YUAN S R, et al. The mechanisms study of the effect of sludge hydrolysis residual preparation on the performance of composite phase change materials[J]. Journal of Energy Storage, 2022, 56: doi: 10.1016/j.est.2022.105869. |
81 | QU Y L, WANG L, LIN X P, et al. Mixed convective heat transfer characteristics and mechanisms in structured packed beds[J]. Particuology, 2023, 82: 122-133. |
82 | ZHANG S Q, PU L, XU L L, et al. Study on dominant heat transfer mechanism in vertical smooth/finned-tube thermal energy storage during charging process[J]. Applied Thermal Engineering, 2022, 204: doi: 10.1016/j.applthermaleng.2021.117935. |
83 | WANG Y, ZHU Z L, KE H B, et al. Study of ice spike formation mechanism in the water-based phase change energy storage[J]. Journal of Enhanced Heat Transfer, 2023, 30(1): 53-73. |
84 | 朱娜, 吴涛, 胡平放, 等. 非绝热条件下冰浆管内流动特性研究[J]. 华中科技大学学报(自然科学版), 2022, 50(10): 77-82. |
ZHU N, WU T, HU P F, et al. Research on flow characteristics of ice slurry in pipe under nonadiabatic condition[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(10): 77-82. | |
85 | 王辉祥, 熊亚选, 任静, 等. Na2CO3/电石渣复合相变储热材料制备与性能[J]. 储能科学与技术, 2022, 11(12): 3819-3827. |
WANG H X, XIONG Y X, REN J, et al. Fabrication and performance investigation of Na2CO3/Carbide slag shape-stable phase change composites[J]. Energy Storage Science and Technology, 2022, 11(12): 3819-3827. | |
86 | 李亚溪, 谭振炜, 李传常. 相变储冷凝胶的制备与应用[J]. 储能科学与技术, 2022, 11(12): 3845-3854. |
LI Y X, TAN Z W, LI C C. Research on the preparation and application of a phase-change gel for cold storage[J]. Energy Storage Science and Technology, 2022, 11(12): 3845-3854. | |
87 | 徐运飞, 吴水木, 李英杰. 面向太阳能热发电的CaO-CO2热化学储热技术研究进展[J]. 发电技术, 2022, 43(5): 740-747. |
XU Y F, WU S M, LI Y J. Research progress of CaO-CO2 thermochemical heat storage technology for concentrated solar power plant[J]. Power Generation Technology, 2022, 43(5): 740-747. | |
88 | 耿直, 张梦琼, 鲁向武, 等. 太阳能蓄热水箱结构优化及储放热性能分析[J]. 热力发电, 2023, 52(2): 64-72. |
GENG Z, ZHANG M Q, LU X W, et al. Structure optimization of solar thermal storage tank and analysis of its thermal storage and release performance[J]. Thermal Power Generation, 2023, 52(2): 64-72. | |
89 | Lin L, Wang L, Bai Y K, et al. Experimental study on the storage performance of the innovative spray-type packed bed thermal energy storage[J]. Applied Thermal Engineering, 2022, 219: doi: 10.1016/j.applthermaleng.2022.119415. |
90 | 周科, 李银龙, 李明皓, 等. 燃煤发电-物理储热耦合技术研究进展与系统调峰能力分析[J]. 洁净煤技术, 2022, 28(3): 159-172. |
ZHOU K, LI Y L, LI M H, et al. Research progress on the coupling technology of coal-fired power generation-physical thermal storage and analysis for the system peaking capacity[J]. Clean Coal Technology, 2022, 28(3): 159-172. | |
91 | 张静, 庞志刚, 李乐, 等. 动态冰浆蓄冷空调系统在北京市某恒温恒湿实验室的应用研究[J]. 节能, 2022, 41(11): 11-13. |
ZHANG J, PANG Z G, LI L, et al. Application research of dynamic ice slurry cold storage air conditioning system in a constant temperature and humidity laboratory in Beijing[J]. Energy Conservation, 2022, 41(11): 11-13. | |
92 | 周传迪. 大容量储能飞轮转子-支撑系统动力学特性研究[D]. 北京: 华北电力大学(北京), 2022. |
93 | 刘钙. 飞轮储能磁轴承支承系统优化设计及控制研究[D]. 镇江: 江苏大学, 2022. |
LIU G. Research on optimization design and control of magnetic bearings support system for flywheel energy storage[D]. Zhenjiang: Jiangsu University, 2022. | |
94 | CHEN Y G, ZANG B Q. Analysis of alternating flux density harmonics inside the rotor of a 1 MW high-speed interior permanent magnet synchronous machine used for flywheel energy storage systems[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105664. |
95 | BAO Z, JING H L, LIU W, et al. Performance evaluation of a superconducting flywheel energy storage system incorporating an AC homopolar motor layout[J]. Superconductor Science and Technology, 2022, 35(8): doi: 10.1088/1361-6668/ac7585. |
96 | 刘海山, 徐宪龙, 魏书洲, 等. 基于提升华北电网考核指标的飞轮储能参与调频划分电量控制策略[J]. 储能科学与技术, 2023, 12(4): 1176-1184. |
LIU H S, XU X L, WEI S Z, et al. Flywheel energy storage participates in frequency modulation power division control based on improving power grid assessment index of North China power grid[J]. Energy Storage Science and Technology, 2023, 12(4): 1176-1184. | |
97 | CHEN X D, LI Y, HUAN D J, et al. Influence of filament winding tension on the deformation of composite flywheel rotors with H-shaped hubs[J]. Polymers, 2022, 14(6): 1155. |
98 | WANG H Z, WU Z G, LIU K, et al. Modeling and control strategies of a novel axial hybrid magnetic bearing for flywheel energy storage system[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 3819-3829. |
99 | 吕东元, 吕奇超, 李延宝, 等. 磁悬浮储能飞轮高速永磁电机设计及优化[J]. 大电机技术, 2022(2): 6-12, 44. |
LV D Y, LV Q C, LI Y B, et al. The design and optimization of high-speed permanent magnet machines for maglev flywheel energy storage system[J]. Large Electric Machine and Hydraulic Turbine, 2022(2): 6-12, 44. | |
100 | LI Z R, NIE Z L, XU J E, et al. Harmonic analysis and neutral-point potential control of interleaved parallel three-level inverters for flywheel energy storage system[J]. Frontiers in Energy Research, 2022, 9: doi: 10.3389/fenrg.2021.811845. |
101 | 张继红, 刘云飞, 吴振奎, 等. 飞轮与电池混合储能的直流微网母线电压波动抑制策略[J]. 化工自动化及仪表, 2022, 49(6): 699-706. |
ZHANG J H, LIU Y F, WU Z K, et al. Suppression strategy for DC microgrid bus voltage fluctuation of hybrid flywheel and battery energy storage[J]. Control and Instruments in Chemical Industry, 2022, 49(6): 699-706. | |
102 | 许庆祥, 滕伟, 武鑫, 等. 平抑风电功率波动的飞轮储能系统容量配置方法[J]. 储能科学与技术, 2022, 11(12): 3906-3914. |
XU Q X, TENG W, WU X, et al. Capacity configuration method of flywheel storage system for suppressing power fluctuation of wind farms[J]. Energy Storage Science and Technology, 2022, 11(12): 3906-3914. | |
103 | 罗耀东, 田立军, 王垚, 等. 飞轮储能参与电网一次调频协调控制策略与容量优化配置[J]. 电力系统自动化, 2022, 46(9): 71-82. |
LUO Y D, TIAN L J, WANG Y, et al. Coordinated control strategy and optimal capacity configuration for flywheel energy storage participating in primary frequency regulation of power grid[J]. Automation of Electric Power Systems, 2022, 46(9): 71-82. | |
104 | 李彦吉, 陈鹰, 李祎杨. 基于飞轮储能的牵引变电所能量回收和电能质量综合治理系统的设计[J]. 储能科学与技术, 2022, 11(12): 3883-3894. |
LI Y J, CHEN Y, LI Y Y. Design of regenerative braking and power quality harnessed synthetically system in traction substation based on flywheel energy storage[J]. Energy Storage Science and Technology, 2022, 11(12): 3883-3894. | |
105 | 李树胜, 王佳良, 李光军, 等. MW级飞轮阵列在风光储能基地示范应用[J]. 储能科学与技术, 2022, 11(2): 583-592. |
LI S S, WANG J L, LI G J, et al. Demonstration applications in wind solar energy storage field based on MW flywheel array system[J]. Energy Storage Science and Technology, 2022, 11(2): 583-592. | |
106 | 青岛地铁. 飞轮储能项目: 让青岛城市轨道交通驶入绿色快车道[EB/OL]. (2022-04-25)http://www.qd-metro.com/planning/view.php?id=5565. |
107 | BOZKAYA B, BAUKNECHT S, SETTELEIN J, et al. Comparison of dynamic charge acceptance tests on lead-acid cells for carbon additive screening[J]. Energy Technology, 2022, 10(4): doi: 10.1002/ente.202101051. |
108 | YIN J, LIN H, SHI J, et al. Lead-carbon batteries toward future energy storage: from mechanism and materials to applications[J]. Electrochemical Energy Reviews, 2022, 5(3): doi: 10.1007/s41918-022-00134-w. |
109 | 陈理, 王丽, 胡曙, 等. 香兰素在铅炭电池负极中的应用研究[J]. 蓄电池, 2022, 59(5): 246-250. |
CHEN L, WANG L, HU S, et al. Study on the application of vanillin in the negative electrode of lead carbon battery[J]. Chinese LABAT Man, 2022, 59(5): 246-250. | |
110 | YANAMANDRA K, BEHERA R K, DAOUD A, et al. Migration barrier estimation of carbon in lead for lead-acid battery applications: A density functional theory approach[J]. Solids, 2022, 3(2): 177-187. |
111 | WANG Z D, TUO X P, ZHOU J Q, et al. Performance study of large capacity industrial lead‑carbon battery for energy storage[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022. 105398. |
112 | BAUKNECHT S, KOWAL J, BOZKAYA B, et al. The effects of cell configuration and scaling factors on constant current discharge and dynamic charge acceptance in lead-acid batteries[J]. Journal of Energy Storage, 2022, 45: doi: 10.1016/j.est.2021.103667. |
113 | SHI C G, PENG X X, DAI P, et al. Investigation and suppression of oxygen release by LiNi0.8Co0.1Mn0.1O2 cathode under overcharge conditions[J]. Advanced Energy Materials, 2022, 12(20): doi: 10.1002/aenm.202200569. |
114 | WANG D H, MA Y J, XU W Q, et al. Controlled isotropic canalization of microsized silicon enabling stable high-rate and high-loading lithium storage[J]. Advanced Materials, 2023: doi: 10.1002/adma.202212157. |
115 | YAO Y X, YAO N, ZHOU X R, et al. Ethylene-carbonate-free electrolytes for rechargeable Li-ion pouch cells at sub-freezing temperatures[J]. Advanced Materials, 2022, 34(45): doi: 10. 1002/adma.202206448. |
116 | BAO C S, ZHENG C J, WU M F, et al. 12 µm-thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries[J]. Advanced Energy Materials, 2023, 13(13): doi: 10.1002/aenm.202204028. |
117 | LIN J, FAN E S, ZHANG X D, et al. Sustainable upcycling of spent lithium-ion batteries cathode materials: Stabilization by in situ Li/Mn disorder[J]. Advanced Energy Materials, 2022, 12(26): doi: 10.1002/aenm.202201174. |
118 | 王维坤, 王安邦, 金朝庆. 锂硫电池的实用化挑战[J]. 储能科学与技术, 2020, 9(2): 593-597. |
WANG W K, WANG A B, JIN Z Q. Challenges on practicalization of lithium sulfur batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 593-597. | |
119 | LIU S Q, WANG B Y, ZHANG X, et al. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries[J]. Matter, 2021, 4(5): 1511-1527. |
120 | HUA W X, SHANG T X, LI H A, et al. Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis[J]. Nature Catalysis, 2023, 6(2): 174-184. |
121 | WANG Z Y, GE H L, LIU S, et al. High-entropy alloys to activate the sulfur cathode for lithium-sulfur batteries[J]. Energy & Environmental Materials, 2022: doi: 10.1002/eem2.12358. |
122 | JI H Q, WANG Z K, SUN Y W, et al. Weakening Li+ de-solvation barrier for cryogenic Li-S pouch cells[J]. Advanced Materials, 2023, 35(9): doi: 10.1002/adma.202208590. |
123 | CHU F L, WANG M, LIU J M, et al. Low concentration electrolyte enabling cryogenic lithium-sulfur batteries[J]. Advanced Functional Materials, 2022, 32(44): doi: 10.1002/adfm.202205393. |
124 | HUANG L, LU T, XU G J, et al. Thermal runaway routes of large-format lithium-sulfur pouch cell batteries[J]. Joule, 2022, 6(4): 906-922. |
125 | JI Y C, YANG K, LIU M Q, et al. PIM-1 as a multifunctional framework to enable high-performance solid-state lithium-sulfur batteries[J]. Advanced Functional Materials, 2021, 31(47): doi: 10.1002/adfm.202104830. |
126 | CHEN J H, LU H C, ZHANG X, et al. Electrochemical polymerization of nonflammable electrolyte enabling fast-charging lithium-sulfur battery[J]. Energy Storage Materials, 2022, 50: 387-394. |
127 | LIU Y, LIU H W, LIN Y T, et al. Mechanistic investigation of polymer-based all-solid-state lithium/sulfur battery[J]. Advanced Functional Materials, 2021, 31(41): doi: 10.1002/adfm.202104863. |
128 | PAN H, ZHANG M H, CHENG Z, et al. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Science Advances, 2022, 8(15): doi: 10.1126/sciadv.abn4372. |
129 | ZHU X X, JIANG W, ZHAO S, et al. Exploring the concordant solid-state electrolytes for all-solid-state lithium-sulfur batteries[J]. Nano Energy, 2022, 96: doi: 10.1016/j.nanoen.2022.107093. |
130 | PANG Q Q, MENG J S, GUPTA S, et al. Fast-charging aluminium-chalcogen batteries resistant to dendritic shorting[J]. Nature, 2022, 608(7924): 704-711. |
131 | ZHANG D, CHU W Q, WANG D Y, et al. High-voltage aluminium-sulfur batteries with functional polymer membrane[J]. Advanced Functional Materials, 2022, 32(39): doi: 10.1002/adfm.202205562. |
132 | ZHOU X F, YU Z X, YAO Y, et al. A high-efficiency Mo2C electrocatalyst promoting the polysulfide redox kinetics for Na-S batteries[J]. Advanced Materials, 2022, 34(14): doi: 10.1002/adma.202200479. |
133 | LI Z, WANG C L, LING F X, et al. Room-temperature sodium-sulfur batteries: Rules for catalyst selection and electrode design[J]. Advanced Materials, 2022, 34(32): doi: 10.1002/adma.202204214. |
134 | WU J R, TIAN Y, GAO Y F, et al. Rational electrolyte design toward cyclability remedy for room-temperature sodium-sulfur batteries[J]. Angewandte Chemie International Edition, 2022, 61(30): doi: 10.1002/anie.202205416. |
135 | SU L W, XU Q H, SONG Y, et al. Ce(NO3)4: A dual-functional electrolyte additive for room-temperature sodium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 450: doi: 10.1016/j.cej. 2022.137978. |
136 | ZOU Q L, SUN Y, LIANG Z J, et al. Achieving efficient magnesium-sulfur battery chemistry via polysulfide mediation[J]. Advanced Energy Materials, 2021, 11(31): doi: 10.1002/aenm. 202101552. |
137 | WU T H, LIU X, ZHANG X, et al. Full concentration gradient-tailored Li-rich layered oxides for high-energy lithium-ion batteries[J]. Advanced Materials, 2021, 33(2): doi: 10.1002/adma.202001358. |
138 | YU H J, SO Y G, REN Y, et al. Temperature-sensitive structure evolution of lithium-manganese-rich layered oxides for lithium-ion batteries[J]. Journal of the American Chemical Society, 2018, 140(45): 15279-15289. |
139 | WU T H, ZHANG X, WANG Y Z, et al. Gradient "single-crystal" Li-rich cathode materials for high-stable lithium-ion batteries[J]. Advanced Functional Materials, 2023, 33(4): doi: 10.1002/adfm.202210154. |
140 | SONG J, NING F H, ZUO Y X, et al. Entropy stabilization strategy for enhancing the local structural adaptability of Li-rich cathode materials[J]. Advanced Materials, 2023, 35(7): doi: 10.1002/adma.202208726. |
141 | LIU T C, LIU J J, LI L X, et al. Origin of structural degradation in Li-rich layered oxide cathode[J]. Nature, 2022, 606(7913): 305-312. |
142 | AIKEN C P, LOGAN E R, ELDESOKY A, et al. Li[Ni0.5Mn0.3Co0.2]O2 as a superior alternative to LiFePO4 for long-lived low voltage Li-ion cells[J]. Journal of the Electrochemical Society, 2022, 169(5): doi: 10.1149/1945-7111/ac67b5. |
143 | 袁治章, 刘宗浩, 李先锋. 液流电池储能技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2944-2958. |
YUAN Z Z, LIU Z H, LI X F. Research progress of flow battery technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2944-2958. | |
144 | XIA Y S, CAO H Y, XU F, et al. Polymeric membranes with aligned zeolite nanosheets for sustainable energy storage[J]. Nature Sustainability, 2022, 5(12): 1080-1091. |
145 | ZHANG Y H, LI F, LI T Y, et al. Insights into an air-stable methylene blue catholyte towards kW-scale practical aqueous organic flow batteries[J]. Energy & Environmental Science, 2023, 16(1): 231-240. |
146 | LIU Y, XIE C X, LI X F. Bromine assisted MnO2 dissolution chemistry: Toward a hybrid flow battery with energy density of over 300 Wh L-1[J]. Angewandte Chemie International Edition, 2022, 61(51): doi: 10.1002/anie.202213751. |
147 | YU D L, ZHI L P, ZHANG F F, et al. Scalable alkaline zinc-iron/nickel hybrid flow battery with energy density up to 200 wh L-1[J]. Advanced Materials, 2023, 35(7): doi: 10.1002/adma.202209390. |
148 | YUAN Z Z, LIANG L X, DAI Q, et al. Low-cost hydrocarbon membrane enables commercial-scale flow batteries for long-duration energy storage[J]. Joule, 2022, 6(4): 884-905. |
149 | DING F X, ZHAO C L, XIAO D D, et al. Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability[J]. Journal of the American Chemical Society, 2022, 144(18): 8286-8295. |
150 | GAO A, ZHANG Q H, LI X Y, et al. Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries[J]. Nature Sustainability, 2021, 5(3): 214-224. |
151 | FU F, LIU X A, FU X G, et al. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-30113-0. |
152 | SHI Q H, QI R J, FENG X C, et al. Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries[J]. Nature Communications, 2022, 13: 3205. |
153 | SHRAER S D, LUCHININ N D, TRUSSOV I A, et al. Development of vanadium-based polyanion positive electrode active materials for high-voltage sodium-based batteries[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-31768-5. |
154 | XIE F, NIU Y S, ZHANG Q Q, et al. Screening heteroatom configurations for reversible sloping capacity promises high-power Na-ion batteries[J]. Angewandte Chemie International Edition, 2022, 61(11): doi: 10.1002/anie.202116394. |
155 | CHI X W, ZHANG Y, HAO F, et al. An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-30517-y. |
156 | WANG X E, ZHANG C, SAWCZYK M, et al. Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes[J]. Nature Materials, 2022, 21(9): 1057-1065. |
157 | CHEN F F, WANG X E, ARMAND M, et al. Cationic polymer-in-salt electrolytes for fast metal ion conduction and solid-state battery applications[J]. Nature Materials, 2022, 21(10): 1175-1182. |
158 | SU Y, RONG X H, GAO A, et al. Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries[J]. Nature Communications, 2022, 13: 4181. |
159 | SU Y, RONG X H, LI H, et al. High-entropy microdomain interlocking polymer electrolytes for advanced all-solid-state battery chemistries[J]. Advanced Materials, 2023, 35(1): doi: 10.1002/adma.202209402. |
160 | LI Y Q, ZHOU Q, WENG S T, et al. Interfacial engineering to achieve an energy density of over 200 Wh kg-1 in sodium batteries[J]. Nature Energy, 2022, 7(6): 511-519. |
161 | LIU X, LIU C F, XU S H, et al. Porous organic polymers for high-performance supercapacitors[J]. Chemical Society Reviews, 2022, 51(8): 3181-3225. |
162 | LI K L, LI J P, ZHU Q Z, et al. Three-dimensional MXenes for supercapacitors: A review[J]. Small Methods, 2022, 6(4): doi: 10.1002/smtd.202101537. |
163 | XING F F, BI Z H, Su F, et al. Unraveling the design principles of battery-supercapacitor hybrid devices: From fundamental mechanisms to microstructure engineering and challenging perspectives[J]. Advanced Energy Materials, 2022, 12(26): doi: 10.1002/aenm.202200594. |
164 | HE B, ZHANG Q C, PAN Z H, et al. Freestanding metal-organic frameworks and their derivatives: An emerging platform for electrochemical energy storage and conversion[J]. Chemical Reviews, 2022, 122(11): 10087-10125. |
165 | ZHENG S S, SUN Y, XUE H G, et al. Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance[J]. National Science Review, 2022, 9(7): doi: 10.1093/nsr/nwab197. |
166 | YANG X X, ZHAO S, ZHANG Z Z, et al. Pore structure regulation of hierarchical porous carbon derived from coal tar pitch via pre-oxidation strategy for high-performance supercapacitor[J]. Journal of Colloid and Interface Science, 2022, 614: 298-309. |
167 | WANG Q, CHEN Y Y, JIANG X, et al. Self-assembly defect-regulating superstructured carbon[J]. Energy Storage Materials, 2022, 48: 164-171. |
168 | ZHAO J A, WANG S M, GAO L J, et al. NiO nanoparticles anchored on N-doped laser-induced graphene for flexible planar micro-supercapacitors[J]. ACS Applied Nano Materials, 2022, 5(8): 11314-11323. |
169 | LIU W J, ZHANG X, XU Y N, et al. 2D graphene/MnO heterostructure with strongly stable interface enabling high-performance flexible solid-state lithium-ion capacitors[J]. Advanced Functional Materials, 2022, 32(30): doi: 10.1002/adfm.202202342. |
170 | ZHANG T Q, MAO Z, SHI X J, et al. Tissue-derived carbon microbelt paper: A high-initial-coulombic-efficiency and low-discharge-platform K+-storage anode for 4.5 V hybrid capacitors[J]. Energy & Environmental Science, 2022, 15(1): 158-168. |
171 | JIANG Y Q, MA K, SUN M L, et al. All-climate stretchable dendrite-free Zn-ion hybrid supercapacitors enabled by hydrogel electrolyte engineering[J]. Energy & Environmental Materials, 2023, 6(2): doi: 10.1002/eem2.12357. |
172 | ZHAO Y Z, LIANG Q D, MUGO S M, et al. Self-healing and shape-editable wearable supercapacitors based on highly stretchable hydrogel electrolytes[J]. Advanced Science, 2022, 9(24): doi: 10.1002/advs.202201039. |
173 | 许珂, 陈珏锡, 孟瑶, 等. Cu-NiCoP微球的制备及其超级电容性能[J]. 储能科学与技术, 2023, 12(2): 357-365. |
XU K, CHEN J X, MENG Y, et al. Preparation of Cu-NiCoP microspheres and their supercapacitive performance[J]. Energy Storage Science and Technology, 2023, 12(2): 357-365. | |
174 | TANG P, TAN W Y, LI F Z, et al. A pseudocapacitor diode based on ion-selective surface redox effect[J]. Advanced Materials, 2023, 35(10): doi: 10.1002/adma.202209186. |
175 | ZHANG X H, SUN X Z, AN Y B, et al. Design of a fast-charge lithium-ion capacitor pack for automated guided vehicle[J]. Journal of Energy Storage, 2022, 48: doi: 10.1016/j.est.2022.104045. |
176 | ZHU Y Y, ZHENG S H, LU P F, et al. Kinetic regulation of MXene with water-in-LiCl electrolyte for high-voltage micro-supercapacitors[J]. National Science Review, 2022, 9(7): doi: 10.1093/nsr/nwac024. |
177 | CHI F Y, HU Y J, HE W Y, et al. Graphene ionogel ultra-fast filter supercapacitor with 4 V workable window and 150 ℃ operable temperature[J]. Small, 2022, 18(18): doi: 10.1002/smll.202200916. |
178 | 陈云良, 刘旻, 凡家异, 等. 重力储能发电现状、技术构想及关键问题[J]. 工程科学与技术, 2022, 54(1): 97-105. |
CHEN Y L, LIU M, FAN J Y, et al. Present situation, technology conceptualization and key problem for gravity energy storage[J]. Advanced Engineering Sciences, 2022, 54(1): 97-105. | |
179 | 肖立业, 张京业, 聂子攀, 等. 地下储能工程[J]. 电工电能新技术, 2022, 41(2): 1-9. |
XIAO L Y, ZHANG J Y, NIE Z P, et al. Underground energy storage engineering[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(2): 1-9. | |
180 | 秦婷婷, 周学志, 郭丁彰, 等. 铁轨重力储能系统效率影响因素研究[J]. 储能科学与技术, 2023, 12(3): 835-845. |
QIN T T, ZHOU X Z, GUO D Z, et al. Study on factors influencing rail gravity energy storage system efficiency[J]. Energy Storage Science and Technology, 2023, 12(3): 835-845. | |
181 | TONG W X, LU Z G, CHEN W J, et al. Solid gravity energy storage: A review[J]. Journal of Energy Storage, 2022, 53: doi: 10.1016/j.est.2022.105226. |
182 | 赵永明, 邱清泉, 聂子攀, 等. 重力/飞轮综合储能电机变流并网系统设计及运行特性[J]. 储能科学与技术, 2022, 11(12): 3895-3905. |
ZHAO Y M, QIU Q Q, NIE Z P, et al. Design and operating characteristics of a grid-connected motor-converting system for gravity/flywheel integrated energy storage[J]. Energy Storage Science and Technology, 2022, 11(12): 3895-3905. | |
183 | 夏焱, 万继方, 李景翠, 等. 重力储能技术研究进展[J]. 新能源进展, 2022, 10(3): 258-264. |
XIA Y, WAN J F, LI J C, et al. Research progress of gravity energy storage technology[J]. Advances in New and Renewable Energy, 2022, 10(3): 258-264. | |
184 | 王柄根. 中国天楹: 重力储能将打开新成长空间[J]. 股市动态分析, 2022(19): 44-45. |
WANG B G. China Tian Ying: Gravity energy storage will open up new growth space[J]. Stock Market Trend Analysis Weekly, 2022(19): 44-45. | |
185 | WANG L, LIN X P, ZHANG H, et al. Thermodynamic analysis and optimization of pumped thermal-liquid air energy storage (PTLAES)[J]. Applied Energy, 2023, 332: doi: 10.1016/j.apenergy.2022.120499. |
186 | XUE X J, ZHAO C Y. Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores[J]. Applied Energy, 2023, 329: doi: 10.1016/j.apenergy.2022.120274. |
187 | PANG J S, XU C, WU Y Z, et al. Thermodynamic analysis and parameter optimization of a Chemical Looping Electricity Storage system[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105832. |
188 | SUN R Q, ZHAO Y L, LIU M, et al. Thermodynamic design and optimization of pumped thermal electricity storage systems using supercritical carbon dioxide as the working fluid[J]. Energy Conversion and Management, 2022, 271: doi: 10.1016/j.enconman.2022.116322. |
189 | ZHANG H, WANG L, LIN X P, et al. Parametric optimisation and thermo-economic analysis of Joule-Brayton cycle-based pumped thermal electricity storage system under various charging-discharging periods[J]. Energy, 2023, 263: doi: 10.1016/j.energy.2022.125908. |
190 | ZHAO Y L, SONG J, LIU M, et al. Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials[J]. Renewable Energy, 2022, 186: 431-456. |
191 | LIU S H, BAI H P, JIANG P, et al. Economic, energy and exergy assessments of a Carnot battery storage system: Comparison between with and without the use of the regenerators[J]. Journal of Energy Storage, 2022, 50: doi: 10.1016/j.est. 2022.104577. |
192 | FAN R X, XI H. Energy, exergy, economic (3E) analysis, optimization and comparison of different Carnot battery systems for energy storage[J]. Energy Conversion and Management, 2022, 252: doi: 10.1016/j.enconman.2021.115037. |
193 | FAN R X, XI H. Exergoeconomic optimization and working fluid comparison of low-temperature Carnot battery systems for energy storage[J]. Journal of Energy Storage, 2022, 51: doi: 10.1016/j.est.2022.104453. |
194 | TIAN W B, XI H. Comparative analysis and optimization of pumped thermal energy storage systems based on different power cycles[J]. Energy Conversion and Management, 2022, 259: doi: 10.1016/j.enconman.2022.115581. |
195 | ZHANG Y C, XIE Z Z. Thermodynamic efficiency and bounds of pumped thermal electricity storage under whole process ecological optimization[J]. Renewable Energy, 2022, 188: 711-720. |
196 | ZHAO Y, SONG J, ZHAO C Y, et al. Thermodynamic investigation of latent-heat stores for pumped-thermal energy storage[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105802. |
197 | SHI X P, HE Q, LU C, et al. Variable load modes and operation characteristics of closed Brayton cycle pumped thermal electricity storage system with liquid-phase storage[J]. Renewable Energy, 2023, 203: 715-730. |
198 | YANG H, LI J D, GE Z H, et al. Dynamic characteristics and control strategy of pumped thermal electricity storage with reversible Brayton cycle[J]. Renewable Energy, 2022, 198: 1341-1353. |
199 | YANG H, LI J D, GE Z H, et al. Dynamic performance for discharging process of pumped thermal electricity storage with reversible Brayton cycle[J]. Energy, 2023, 263: doi: 10.1016/j.energy.2022.125930. |
200 | LU C, SHI X P, HE Q, et al. Dynamic modeling and numerical investigation of novel pumped thermal electricity storage system during startup process[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105409. |
201 | XUE X J, ZHAO Y, ZHAO C Y. Multi-criteria thermodynamic analysis of pumped-thermal electricity storage with thermal integration and application in electric peak shaving of coal-fired power plant[J]. Energy Conversion and Management, 2022, 258: doi: 10.1016/j.enconman.2022.115502. |
202 | 李乐璇, 徐玉杰, 尹钊, 等. 超临界二氧化碳储能系统(火用)损特性分析[J]. 储能科学与技术, 2021, 10(5): 1824-1834. |
LI L X, XU Y J, YIN Z, et al. Exergy destruction characteristics of a supercritical carbon-dioxide energy storage system[J]. Energy Storage Science and Technology, 2021, 10(5): 1824-1834. | |
203 | WU C, WAN Y K, LIU Y, et al. Thermodynamic simulation and economic analysis of a novel liquid carbon dioxide energy storage system[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105544. |
204 | SUN L, TANG B, XIE Y H. Performance assessment of two compressed and liquid carbon dioxide energy storage systems: Thermodynamic, exergoeconomic analysis and multi-objective optimization[J]. Energy, 2022, 256: doi: 10.1016/j.energy. 2022.124648. |
205 | LU C, HE Q, HAO Y P, et al. Thermodynamic analysis and efficiency improvement of trans-critical compressed carbon dioxide energy storage system[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105480. |
206 | LIU Z, LIU X, ZHANG W F, et al. Thermodynamic analysis on the feasibility of a liquid energy storage system using CO2-based mixture as the working fluid[J]. Energy, 2022, 238: doi: 10.1016/j.energy.2021.121759. |
207 | 陶飞跃, 王焕然, 李瑞雄, 等. 利用环境再冷的二氧化碳储能热电联产系统及其热力学分析[J]. 储能科学与技术, 2022, 11(5): 1492-1501. |
TAO F Y, WANG H R, LI R X, et al. Thermodynamic analysis of a combined heating and power system coupled with carbon dioxide energy storage utilizing environmental recooling[J]. Energy Storage Science and Technology, 2022, 11(5): 1492-1501. | |
208 | ZHAO P, ZHANG S Q, XU W P, et al. Performance analysis of a pumped hydro assisted near-isothermal compressed carbon dioxide energy storage system with gas/liquid phase change process[J]. International Journal of Energy Research, 2022, 46(10): 13711-13725. |
209 | ZHANG T H, GAO J M, ZHANG Y, et al. Thermodynamic analysis of a novel adsorption-type trans-critical compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2022, 270: doi: 10.1016/j.enconman.2022. 116268. |
210 | TANG B, SUN L, XIE Y H. Comprehensive performance evaluation and optimization of a liquid carbon dioxide energy storage system with heat source[J]. Applied Thermal Engineering, 2022, 215: doi: 10.1016/j.applthermaleng.2022.118957. |
211 | XU W P, ZHAO P, GOU F F, et al. A combined heating and power system based on compressed carbon dioxide energy storage with carbon capture: Exploring the technical potential[J]. Energy Conversion and Management, 2022, 260: doi: 10.1016/j.enconman.2022.115610. |
212 | JAE C Y, IK L J. Thermodynamic analysis of compressed and liquid carbon dioxide energy storage system integrated with steam cycle for flexible operation of thermal power plant[J]. Energy Conversion and Management, 2022, 256: doi: 10.1016/j.enconman.2022.115374. |
213 | ZHANG Y, LIANG T Y, YANG K. An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization[J]. Energy, 2022, 247: doi: 10.1016/j.energy.2022.123566. |
214 | FU H L, HE Q, SONG J T, et al. Thermodynamic of a novel solar heat storage compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2021, 247: doi: 10.1016/j.enconman.2021.114757. |
215 | QI M, PARK J, LANDON R S, et al. Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential[J]. Renewable and Sustainable Energy Reviews, 2022, 153: doi: 10.1016/j.rser.2021.111732. |
216 | QI M, LEE J, HONG S, et al. Flexible and efficient renewable-power-to-methane concept enabled by liquid CO2 energy storage: Optimization with power allocation and storage sizing[J]. Energy, 2022, 256: doi: 10.1016/j.energy.2022.124583. |
217 | HUANG R, ZHOU K, LIU Z. Reduction on the inefficiency of heat recovery storage in a compressed carbon dioxide energy storage system[J]. Energy, 2022, 244: doi: 10.1016/j.energy. 2022.123224. |
218 | WANG J, YAN X P, LU M J, et al. Structural assessment of printed circuit heat exchangers in supercritical CO2 waste heat recovery systems for ship applications[J]. Journal of Thermal Science, 2022, 31(3): 689-700. |
219 | STANEK B, OCHMANN J, BARTELA Ł, et al. Isobaric tanks system for carbon dioxide energy storage-The performance analysis[J]. Journal of Energy Storage, 2022, 52: doi: 10.1016/j.est.2022.104826. |
220 | 李恺. 基于超临界二氧化碳布雷顿循环的塔式太阳能热发电系统设计与研究[D]. 兰州: 兰州交通大学, 2022. |
LI K. Design and research of tower solar thermal power generation system based on supercritical carbon dioxide brayton cycle[D].Lanzhou: Lanzhou Jiatong University, 2022. | |
221 | LI Y, YU H, TANG D, et al. A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods[J]. Renewable Energy, 2022, 187: 1130-1153. |
222 | 韩中合, 孙烨, 李鹏, 等. 压缩空气/二氧化碳储能系统的运行方式研究[J]. 太阳能学报, 2022, 43(3): 119-125. |
HAN Z H, SUN Y, LI P, et al. Research on operation mode of compressed air/carbon dioxide energy storage system[J]. Acta Energiae Solaris Sinica, 2022, 43(3): 119-125. | |
223 | 严晓生, 王小东, 韩旭, 等. 液态压缩二氧化碳储能与火电机组耦合方案研究[J]. 热力发电, 2023, 52(2): 90-100. |
YAN X S, WANG X D, HAN X, et al. Study on coupling scheme of liquid compressed carbon dioxide energy storage system and thermal power unit[J]. Thermal Power Generation, 2023, 52(2): 90-100. | |
224 | ZHANG Y, WU Y T, YANG K. Dynamic characteristics of a two-stage compression and two-stage expansion Compressed Carbon dioxide energy storage system under sliding pressure operation[J]. Energy Conversion and Management, 2022, 254: doi: 10.1016/j.enconman.2022.115218. |
225 | 王迪, 司龙, 谢欣言, 等. 耦合超临界二氧化碳储能循环燃煤机组动态特性仿真[J]. 中国电机工程学报, 2023, 43(6): 2142-2153. |
WANG D, SI L, XIE X Y, et al. Simulation of dynamic characteristics of coal-fired unit coupled with supercritical carbon dioxide energy storage cycle[J]. Proceedings of the CSEE, 2023, 43(6): 2142-2153. | |
226 | YAN S, ZHOU X B, LI H M, et al. Utilizing in situ alloying reaction to achieve the self-healing, high energy density and cost-effective Li||Sb liquid metal battery[J]. Journal of Power Sources, 2021, 514: doi: 10.1016/j.jpowsour.2021.230578. |
227 | ZHOU H, LI H M, GONG Q, et al. A sodium liquid metal battery based on the multi-cationic electrolyte for grid energy storage[J]. Energy Storage Materials, 2022, 50: 572-579. |
228 | ZHOU Y, LI G Q, LI B X, et al. Operando formation of multi-channel positive electrode achieved via tellurium alloying in liquid metal battery[J]. Energy Storage Materials, 2022, 53: 927-936. |
229 | LI W M, SHI H, DU K F, et al. Revealing the phase evolution and lithium diffusion in the liquid Sn-Sb electrode[J]. Journal of Electroanalytical Chemistry, 2021, 901: doi: 10.1016/j.jelechem. 2021.115719. |
230 | LI W M, SHI H, DU K F, et al. Modeling the mass transfer and phase transition of Sn-Sb positive electrode in a liquid metal battery[J]. Journal of Electroanalytical Chemistry, 2022, 909: doi: 10.1016/j.jelechem.2022.116144. |
231 | JIANG Y D, ZHANG D H, SHI Y X, et al. Lithium transport and intermetallic generation in Li-Bi liquid metal batteries[J]. Electrochimica Acta, 2021, 405: doi.org/10.1016/j.electacta. 2021.139779. |
232 | ZHOU X B, GAO C L, SHEN Y, et al. Multi-field coupled model for liquid metal battery: Comparative analysis of various flow mechanisms and their effects on mass transfer and electrochemical performance[J]. Energy Reports, 2022, 8: 5510-5521. |
233 | ZHOU X B, ZHOU H, YAN S, et al. Increasing the actual energy density of Sb-based liquid metal battery[J]. Journal of Power Sources, 2022, 534: doi: 10.1016/j.jpowsour.2022.231428. |
234 | JIA M Y, CHEN F, WU Y Q, et al. Microstructure and shear fracture behavior of Mo/AlN/Mo symmetrical compositionally graded materials[J]. Materials Science and Engineering: A, 2022, 834: doi: 10.1016/j.msea.2021.142591. |
235 | SHI Q L, GUO Z L, WANG S, et al. Physics-based fractional-order model and parameters identification of liquid metal battery[J]. Electrochimica Acta, 2022, 428: doi: 10.1016/j.electacta.2022. 140916. |
236 | SEEL J A, DAHN J R. Electrochemical intercalation of PF6 into graphite[J]. Journal of the Electrochemical Society, 2000, 147(3): 892. |
237 | YANG K, LIU Q R, ZHENG Y P, et al. Locally ordered graphitized carbon cathodes for high-capacity dual-ion batteries[J]. Angewandte Chemie International Edition, 2021, 60(12): 6326-6332. |
238 | JIANG H Z, HAN X Q, DU X F, et al. A PF6-permselective polymer electrolyte with anion solvation regulation enabling long-cycle dual-ion battery[J]. Advanced Materials, 2022, 34(9): doi: 10.1002/adma.202108665. |
239 | SUN Z Q, ZHU K J, LIU P, et al. Fluorination treatment of conjugated protonated polyanilines for high-performance sodium dual-ion batteries[J]. Angewandte Chemie International Edition, 2022, 61(42): doi: 10.1002/anie.202211866. |
240 | TONG X Y, OU X W, WU N Z, et al. Dual-ion batteries: High oxidation potential≈6.0V of concentrated electrolyte toward high-performance dual-ion battery[J]. Advanced Energy Materials, 2021, 11(25): doi: 10.1002/aenm.202170096. |
241 | WANG B Y, HUANG Y H, WANG Y, et al. Synergistic solvation of anion: An effective strategy toward economical high-performance dual-ion battery[J]. Advanced Functional Materials, 2023, 33(12): doi: 10.1002/adfm.202212287. |
242 | CHENG Z J, GUO L F, DONG Q Y, et al. Highly durable and ultrafast cycling of dual-ion batteries via in situ construction of cathode-electrolyte interphase[J]. Advanced Energy Materials, 2022, 12(44): doi: 10.1002/aenm.202202253. |
243 | LV S Y, FANG T M, DING Z Z, et al. A high-performance quasi-solid-state aqueous zinc-dual halogen battery[J]. ACS Nano, 2022, 16(12): 20389-20399. |
244 | LI J, HAN C J, OU X W, et al. Concentrated electrolyte for high-performance Ca-ion battery based on organic anode and graphite cathode[J]. Angewandte Chemie International Edition, 2022, 61(14): doi: 10.1002/anie.202116668. |
245 | SHENG M H, ZHANG F, JI B F, et al. A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density[J]. Advanced Energy Materials, 2017, 7(7): doi: 10. 1002/aenm.201601963. |
246 | JI B F, ZHANG F, SONG X H, et al. A novel potassium-ion-based dual-ion battery[J]. Advanced Materials, 2017, 29(19): doi: 10.1002/adma.201700519. |
247 | ZHANG X L, TANG Y B, ZHANG F, et al. A novel aluminum-graphite dual-ion battery[J]. Advanced Energy Materials, 2016, 6(11): doi: 10.1002/aenm.201502588. |
248 | WANG M, JIANG C L, ZHANG S Q, et al. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage[J]. Nature Chemistry, 2018, 10(6): 667-672. |
249 | WANG H T, WANG C, ZHANG F, et al. Homogeneous alloying reaction via self-assembly strategy for high-areal-density dual-ion batteries[J]. Chemical Engineering Journal, 2022, 449: doi.org/10.1016/j.cej.2022.137708. |
250 | YANG X R, NI Y X, LU Y, et al. Designing quinone-based anodes with rapid kinetics for rechargeable proton batteries[J]. Angewandte Chemie International Edition, 2022, 61(39): doi: 10.1002/anie.202209642. |
251 | CHEN Q L, LI L H, WANG W M, et al. Thiuram monosulfide with ultrahigh redox activity triggered by electrochemical oxidation[J]. Journal of the American Chemical Society, 2022, 144(41): 18918-18926. |
252 | XU X Y, ZHANG S Q, XU K, et al. Janus dione-based conjugated covalent organic frameworks with high conductivity as superior cathode materials[J]. Journal of the American Chemical Society, 2023, 145(2): 1022-1030. |
253 | 凌志斌, 黄中, 田凯. 大容量电池储能系统技术现状与发展[J]. 供用电, 2018, 35(9): 3-8, 21. |
LING Z B, HUANG Z, TIAN K. The state of art and trend of large scale battery energy storage system technology[J]. Distribution & Utilization, 2018, 35(9): 3-8, 21. | |
254 | 杨世春, 李强伟, 周思达, 等. 面向智能化管理的数字孪生电池构建方法[J]. 北京航空航天大学学报, 2022, 48(9): 1734-1744. |
YANG S C, LI Q W, ZHOU S D, et al. Construction of digital twin model of lithium-ion battery for intelligent management[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1734-1744. | |
255 | 李建林, 方知进, 李雅欣, 等. 用于应急的移动储能系统集群协同控制综述[J]. 电力建设, 2022, 43(3): 75-82. |
LI J L, FANG Z J, LI Y X, et al. Overview of cluster cooperative control of mobile energy storage system for emergency response[J]. Electric Power Construction, 2022, 43(3): 75-82. | |
256 | 侯涛. 辅助新型电力系统调频的电化学储能控制策略[D]. 吉林: 东北电力大学, 2022. |
HOU T. Electrochemical energy storage control strategy for assisting frequency modulation of new power system[D]. Jilin: Northeast Dianli University, 2022. | |
257 | 杨静, 林振康, 汤君, 等. 电池系统的故障特征以及多故障的诊断与识别[J]. 化工学报, 2022, 73(8): 3394-3405. |
YANG J, LIN Z K, TANG J, et al. A review of fault characteristics, fault diagnosis and identification for lithium-ion battery systems[J]. CIESC Journal, 2022, 73(8): 3394-3405. | |
258 | 刘伯峥, 曹六阳, 曾涛, 等. 束缚力对磷酸铁锂电池安全性影响[J]. 储能科学与技术, 2022, 11(8): 2556-2563. |
LIU B Z, CAO L Y, ZENG T, et al. Effect of the binding force on the safety of LiFePO4 cells[J]. Energy Storage Science and Technology, 2022, 11(8): 2556-2563. | |
259 | JIA Z Z, SONG L F, MEI W X, et al. The preload force effect on the thermal runaway and venting behaviors of large-format prismatic LiFePO4 batteries[J]. Applied Energy, 2022, 327: doi: 10.1016/j.apenergy.2022.120100. |
260 | ZHAI H J, CHI M S, LI J Y, et al. Thermal runaway propagation in large format lithium ion battery modules under inclined ceilings[J]. Journal of Energy Storage, 2022, 51: doi: 10.1016/j.est.2022.104477. |
261 | 程志翔, 曹伟, 户波, 等. 储能用大容量磷酸铁锂电池热失控行为及燃爆传播特性[J]. 储能科学与技术, 2023, 12(3): 923-933. |
CHENG Z X, CAO W, HU B, et al. Thermal runaway and explosion propagation characteristics of large lithium iron phosphate battery for energy storage station[J]. Energy Storage Science and Technology, 2023, 12(3): 923-933. | |
262 | SUN H L, ZHANG L, DUAN Q L, et al. Experimental study on suppressing thermal runaway propagation of lithium-ion batteries in confined space by various fire extinguishing agents[J]. Process Safety and Environmental Protection, 2022, 167: 299-307. |
263 | LIU Y J, YANG K, ZHANG M J, et al. The efficiency and toxicity of dodecafluoro-2-methylpentan-3-one in suppressing lithium-ion battery fire[J]. Journal of Energy Chemistry, 2022, 65: 532-540. |
264 | WANG W H, HE S, HE T F, et al. Suppression behavior of water mist containing compound additives on lithium-ion batteries fire[J]. Process Safety and Environmental Protection, 2022, 161: 476-487. |
265 | 陆剑心, 张英, 马出原, 等. 水凝胶对磷酸铁锂电池灭火实验性能[J]. 储能科学与技术, 2022, 11(8): 2637-2644. |
LU J X, ZHANG Y, MA C Y, et al. Study on fire-extinguishing performance of hydrogel on lithium-iron-phosphate batteries[J]. Energy Storage Science and Technology, 2022, 11(8): 2637-2644. | |
266 | 郭东亮, 郭鹏宇, 孙磊, 等. 细水雾对磷酸铁锂储能电池模组性能影响研究[J]. 消防科学与技术, 2022, 41(8): 1093-1097. |
GUO D L, GUO P Y, SUN L, et al. Research on the influence of water mist on the performance of lithium iron phosphate energy storage battery modules[J]. Fire Science and Technology, 2022, 41(8): 1093-1097. | |
267 | YUAN S, CHANG C Y, ZHOU Y, et al. The extinguishment mechanisms of a micelle encapsulator F-500 on lithium-ion battery fires[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105186. |
268 | ZHANG F R, LIU P W, HE Y X, et al. Cooling performance optimization of air cooling lithium-ion battery thermal management system based on multiple secondary outlets and baffle[J]. Journal of Energy Storage, 2022, 52: doi: 10.1016/j.est.2022.104678. |
269 | ZUO S G, CHEN S P, YIN B. Performance analysis and improvement of lithium-ion battery thermal management system using mini-channel cold plate under vibration environment[J]. International Journal of Heat and Mass Transfer, 2022, 193: doi: 10.1016/j.ijheatmasstransfer.2022.122956. |
270 | LI X T, ZHOU Z Y, ZHANG M J, et al. A liquid cooling technology based on fluorocarbons for lithium-ion battery thermal safety[J]. Journal of Loss Prevention in the Process Industries, 2022, 78: doi: 10.1016/j.jlp.2022.104818. |
271 | YI F, JIAQIANG E, ZHANG B, et al. Effects analysis on heat dissipation characteristics of lithium-ion battery thermal management system under the synergism of phase change material and liquid cooling method[J]. Renewable Energy, 2022, 181: 472-489. |
272 | CHEN X, ZHOU F, YANG W, et al. A hybrid thermal management system with liquid cooling and composite phase change materials containing various expanded graphite contents for cylindrical lithium-ion batteries[J]. Applied Thermal Engineering, 2022, 200: doi: 10.1016/j.applthermaleng.2021.117702. |
273 | OUYANG T C, LIU B L, WANG C C, et al. Novel hybrid thermal management system for preventing Li-ion battery thermal runaway using nanofluids cooling[J]. International Journal of Heat and Mass Transfer, 2023, 201: doi: 10.1016/j.ijheatmasstransfer. 2022.123652. |
274 | REN R Y, ZHAO Y H, DIAO Y H, et al. Experimental study on preheating thermal management system for lithium-ion battery based on U-shaped micro heat pipe array[J]. Energy, 2022, 253: doi: 10.1016/j.energy.2022.124178. |
275 | SONG Y H, LYU N W, SHI S, et al. Safety warning for lithium-ion batteries by module-space air-pressure variation under thermal runaway conditions[J]. Journal of Energy Storage, 2022, 56: doi: 10.1016/j.est.2022.105911. |
276 | ZHANG W C, OUYANG N, YIN X X, et al. Data-driven early warning strategy for thermal runaway propagation in Lithium-ion battery modules with variable state of charge[J]. Applied Energy, 2022, 323: doi: 10.1016/j.apenergy.2022.119614. |
277 | JI C W, ZHANG Z Z, WANG B, et al. Study on thermal runaway warning method of lithium-ion battery[J]. Journal of Loss Prevention in the Process Industries, 2022, 78: doi: 10.1016/j.jlp.2022.104785. |
278 | LIAO Z H, ZHANG J G, GAN Z Y, et al. Thermal runaway warning of lithium-ion batteries based on photoacoustic spectroscopy gas sensing technology[J]. International Journal of Energy Research, 2022, 46(15): 21694-21702. |
279 | ZHOU Z Z, ZHOU X D, LI M Y, et al. Experimentally exploring prevention of thermal runaway propagation of large-format prismatic lithium-ion battery module[J]. Applied Energy, 2022, 327: doi: 10.1016/j.apenergy.2022.120119. |
280 | CAO J H, LING Z Y, LIN S, et al. Thermochemical heat storage system for preventing battery thermal runaway propagation using sodium acetate trihydrate/expanded graphite[J]. Chemical Engineering Journal, 2022, 433: doi: 10.1016/j.cej.2021.133536. |
281 | WANG Z R, WANG K H, WANG J L, et al. Inhibition effect of liquid nitrogen on thermal runaway propagation of lithium ion batteries in confined space[J]. Journal of Loss Prevention in the Process Industries, 2022, 79: doi.org/10.1016/j.jlp.2022.104853. |
282 | HUANG Z H, ZHANG Y, SONG L F, et al. Preventing effect of liquid nitrogen on the thermal runaway propagation in 18650 lithium ion battery modules[J]. Process Safety and Environmental Protection, 2022, 168: 42-53. |
283 | MENG X D, LI S, FU W D, et al. Experimental study of intermittent spray cooling on suppression for lithium iron phosphate battery fires[J]. eTransportation, 2022, 11: doi: 10.1016/j.etran. 2021.100142. |
284 | 赵光金, 胡玉霞, 李博文, 等. 簇或舱级释放全氟己酮对磷酸铁锂电池的灭火效果[J/OL]. 安全与环境学报: 1-10[2023-05-08]. https://doi.org/10.13637/j.issn.1009-6094.2022.1974. |
[1] | Yi WU, Yahong MENG, Yi ZHANG, Tie ZHOU, Ji LIU, Yewen WEI. Optimal equalization control of battery energy storage systems in power distribution station area [J]. Energy Storage Science and Technology, 2023, 12(5): 1655-1663. |
[2] | Huiqun YU, Zhehao HU, Daogang PENG, Haoyi SUN. Key technologies for retired power battery recovery and its cascade utilization in energy storage systems [J]. Energy Storage Science and Technology, 2023, 12(5): 1675-1685. |
[3] | Bin LI, Jilei YE, Yu ZHANG, Shanshan SHI, Haojing WANG, Lili LIU, Mingzhe LI. Microgrid-coordinated control strategy with distributed new energy and electro-mechanical hybrid energy storage [J]. Energy Storage Science and Technology, 2023, 12(5): 1510-1515. |
[4] | Bing LI, Hong ZHOU, Liping WANG, Han FENG. Analysis of the talent structure characteristics and high-level basic research themes in global energy storage [J]. Energy Storage Science and Technology, 2023, 12(5): 1738-1746. |
[5] | Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Junfeng HAO, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2023 to Mar. 31, 2023) [J]. Energy Storage Science and Technology, 2023, 12(5): 1553-1569. |
[6] | Jialiang LIU, Cuijing GUO, Huanling WANG. Safety detection and verification of energy storage in lithium-ion battery based on fire fault tree model [J]. Energy Storage Science and Technology, 2023, 12(5): 1695-1704. |
[7] | Weibin HUANG, Biao ZHANG, Jincheng FAN, Wei YANG, Hanbo ZOU, Shengzhou CHEN. Preparation and modification of ZIF-8 composite PEO based solid electrolyte [J]. Energy Storage Science and Technology, 2023, 12(4): 1083-1092. |
[8] | Hongxin WU, Aikui LI, Cun DONG, Shumin SUN, Guanglei LI, Shibo WANG. Control strategy for wind power fluctuation stabilization with energy storage and frequency modulation reserve [J]. Energy Storage Science and Technology, 2023, 12(4): 1194-1203. |
[9] | Qi ZHANG, Chongyang LIU, Jun SONG, Xueling ZHANG, Yinlei LI, Yanfang LI. Progress in synthesis and application of microcapsule phase-change materials [J]. Energy Storage Science and Technology, 2023, 12(4): 1110-1130. |
[10] | Xiaoyu GUO, Hao YU, Xin ZHENG, Yujia LIU, Yuanjie ZUO, Miaomiao ZHANG. Optimal configuration of liquid flow battery energy storage in photovoltaic system [J]. Energy Storage Science and Technology, 2023, 12(4): 1158-1167. |
[11] | Haishan LIU, Xianlong XU, Shuzhou WEI, Yalei PANG, Feng HONG. Flywheel energy storage participates in frequency modulation power division control based on improving power grid assessment index of north China power grid [J]. Energy Storage Science and Technology, 2023, 12(4): 1176-1184. |
[12] | Wenzhe DONG, Sile YANG, Zongyou LIANG, Yinyu CHEN. Research on optimal operation of traction power supply system with integrated hybrid energy storage and RPC [J]. Energy Storage Science and Technology, 2023, 12(4): 1185-1193. |
[13] | Weiling ZHANG, Han GU, Chao ZHANG, Ang GE, Yuanxu YING. Technical economic characteristics and development trends of compressed air energy storage [J]. Energy Storage Science and Technology, 2023, 12(4): 1295-1301. |
[14] | Minyuan GUAN, Jianliang SHEN, Guohua XU, Shun TANG, Weixin ZHANG, Yuancheng CAO. Design and performance research of targeted-fire fighting equipment for lithium-ion battery energy storage system [J]. Energy Storage Science and Technology, 2023, 12(4): 1131-1138. |
[15] | Kaiyuan XUE, Yan WANG, Junwei LANG, Tian HE, Zuoqiang DAI, Zongmin ZHENG. The progress in applications of dicationic ionic liquids in the energy storage and conversion system [J]. Energy Storage Science and Technology, 2023, 12(3): 808-821. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||