Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (1): 57-71.doi: 10.19799/j.cnki.2095-4239.2023.0213
Previous Articles Next Articles
Zhaoyang LI1(), Dinghong LIU1, Yanyan ZHAO1, Man CHEN2, Qikai LEI2, Peng PENG2, Lei LIU1()
Received:
2023-04-10
Revised:
2023-06-30
Online:
2024-01-05
Published:
2024-01-22
Contact:
Lei LIU
E-mail:lizhaoyang@catarc.ac.cn;liulei2013@catarc.ac.cn
CLC Number:
Zhaoyang LI, Dinghong LIU, Yanyan ZHAO, Man CHEN, Qikai LEI, Peng PENG, Lei LIU. Nail penetration characteristics of high-energy-density lithium-ion pouch cell[J]. Energy Storage Science and Technology, 2024, 13(1): 57-71.
Table 4
Quantitative comparison of the nail penetration result in different conditions"
组别 | 孔径/mm | 速度/(mm/s) | 针尖/(°) | 针刺位置 | 试验结果 | ΔV/mV | ΔT/℃ | Λ/mV2 |
---|---|---|---|---|---|---|---|---|
A1 | 100 | 80 | 30° | 孔中心 | HL3 | 113 | 9.4 | 2×2=4 |
B1 | HL3 | 69 | 3.5 | 18×15=270 | ||||
A2 | 20 | 80 | 30° | 孔中心 | HL5 | — | — | — |
B2 | HL3 | 116 | 6.4 | 23×20=460 | ||||
A3 | 20 | 0.1 | 30° | 孔中心 | HL3 | 30 | 2.2 | 9×4=36 |
B3 | HL3 | 80 | 3.1 | 12×2=24 | ||||
A4 | 20 | 0.1 | 30° | 孔边缘 | HL5 | — | — | 12×5=60 |
B4 | HL5 | — | — | — | ||||
A5 | 50 | 80 | 30° | 孔中心 | HL3 | 136 | 22 | 23×15=345 |
B5 | HL3 | 97 | 5.7 | 20×17=340 | ||||
A6 | 50 | 0.1 | 30° | 孔中心 | HL3 | 18 | 0.9 | 8×3=24 |
B6 | HL3 | 19 | 1.2 | 5×3=15 | ||||
A7 | 20 | 0.1 | 60° | 孔中心 | HL3 | 27 | 2 | 7×3=21 |
B7 | HL3 | 24 | 1 | 8×4=32 | ||||
A8 | 100 | 0.1 | 30° | 孔中心 | HL3 | 11 | 0.6 | 7×3=21 |
B8 | HL3 | 18 | 1.3 | 7×2=14 |
1 | 陈天雨, 高尚, 冯旭宁, 等. 锂离子电池热失控蔓延研究进展[J]. 储能科学与技术, 2018, 7(6): 1030-1039. |
CHEN T Y, GAO S, FENG X N, et al. Recent progress on thermal runaway propagation of lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1030-1039. | |
2 | DOOSE S, HASELRIEDER W, KWADE A. Effects of the nail geometry and humidity on the nail penetration of high-energy density lithium ion batteries[J]. Batteries, 2021, 7(1): 6. |
3 | HEUBERGER C F, MAC DOWELL N. Real-world challenges with a rapid transition to 100% renewable power systems[J]. Joule, 2018, 2(3): 367-370. |
4 | GUNEY M S, TEPE Y. Classification and assessment of energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 1187-1197. |
5 | KOOHI-FAYEGH S, ROSEN M A. A review of energy storage types, applications and recent developments[J]. Journal of Energy Storage, 2020, 27: 101047. |
6 | 王芳, 王峥, 林春景, 等. 新能源汽车动力电池安全失效潜在原因分析[J]. 储能科学与技术, 2022, 11(5): 1411-1418. |
WANG F, WANG Z, LIN C J, et al. Analysis on potential causes of safety failure of new energy vehicles[J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. | |
7 | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. |
8 | 许辉勇, 范亚飞, 张志萍, 等. 针刺和挤压作用下动力电池热失控特性与机理综述[J]. 储能科学与技术, 2020, 9(4): 1113-1126. |
XU H Y, FAN Y F, ZHANG Z P, et al. Thermal runaway characteristics and mechanisms of Li-ion batteries for electric vehicles under nail penetration and crush[J]. Energy Storage Science and Technology, 2020, 9(4): 1113-1126. | |
9 | 王芳, 林春景, 刘磊, 等. 动力电池安全性的测试与评价[J]. 储能科学与技术, 2018, 7(6): 967-971. |
WANG F, LIN C J, LIU L, et al. Test and evaluation on safety of power batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 967-971. | |
10 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车用动力蓄电池安全要求及试验方法: GB/T 31485—2015[S]. 北京: 中国标准出版社, 2015. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Safety requirements and test methods for traction battery of electric vehicle: GB/T 31485—2015[S]. Beijing: Standards Press of China, 2015. | |
11 | The International Electrotechnical Commission. Safety requirements secondary lithium-ion cells for the propulsion of electric road vehicles-rules for bibliographic references and citations to information resources: IEC 62660-3, 2010[S]. Geneva: The International Electrotechnical Commission, 2010. |
12 | Underwriter Laboratories Inc. Safety requirements for vehicle power batteries: UL 2580-2020[S]. Chicago, IL, USA, 2020. |
13 | Sandia National Laboratories. Recommended practices for abuse testing rechargeable energy storage systems (RESSs)[S]. New Mexico, California, USA, 2017. |
14 | Society of Automotive Engineers. Electric and hybrid electric vehicle rechargeable energy storage system (ress) safety and abuse testing-rules for bibliographic references and citations to information resources: SAE J2464—2009[S]. America: Society of Automotive Engineers, 2009. |
15 | 金标, 周明涛, 刘方方, 等. 磷酸铁锂动力锂离子电池穿刺实验[J]. 电池, 2017, 47(1): 23-26. |
JIN B, ZHOU M T, LIU F F, et al. Nail penetration test for lithium iron phosphate power Li-ion battery[J]. Battery Bimonthly, 2017, 47(1): 23-26. | |
16 | 田君, 田崔钧, 王一拓, 等. 锂离子电池安全性测试与评价方法分析[J]. 储能科学与技术, 2018, 7(6): 1128-1134. |
TIAN J, TIAN C J, WANG Y T, et al. Safety test and evaluation method of lithium ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1128-1134. | |
17 | ICHIMURA M. The safety characteristics of lithium-ion batteries for mobile phones and the nail penetration test[C]//INTELEC 07-29th International Telecommunications Energy Conference. September 30-October 4, 2007, Rome, Italy. IEEE, 2008: 687-692. |
18 | 刘仕强, 王芳, 樊彬, 等. 针刺速度对动力锂离子电池安全性的影响[J]. 汽车安全与节能学报, 2013, 4(1): 82-86. |
LIU S Q, WANG F, FAN B, et al. Influence of penetration speeds on power Li-ion-cell's safety performance[J]. Journal of Automotive Safety and Energy, 2013, 4(1): 82-86. | |
19 | MAO B B, CHEN H D, CUI Z X, et al. Failure mechanism of the lithium ion battery during nail penetration[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1103-1115. |
20 | YOKOSHIMA T, MUKOYAMA D, MAEDA F, et al. Direct observation of internal state of thermal runaway in lithium ion battery during nail-penetration test[J]. Journal of Power Sources, 2018, 393: 67-74. |
21 | 张海林, 和祥运, 李艳, 等. 锂离子电池的针刺测试[J]. 电池工业, 2014, 19(4): 194-196, 202. |
ZHANG H L, HE X Y, LI Y, et al. Acupuncture test of Li-ion batteries[J]. Chinese Battery Industry, 2014, 19(4): 194-196, 202. | |
22 | 李新静, 张佳瑢, 魏引利, 等. 锂离子电池针刺测试影响因素研究[J]. 电池工业, 2014, 19(S1): 320-323. |
LI X J, ZHANG J R, WEI Y L, et al. Study on the influence factors of acupuncture test for Li-ion battery[J]. Chinese Battery Industry, 2014, 19(S1): 320-323. | |
李新静, 张佳瑢, 魏引利, 等. 锂离子电池针刺测试影响因素研究[J]. 电池工业, 2014, 19(S1): 320-323. | |
LI X J, ZHANG J R, WEI Y L, et al. Study on the influence factors of acupuncture test for Li-ion battery[J]. Chinese Battery Industry, 2014, 19(S1): 320-323. | |
23 | 王磊. 锂离子电池针刺实验影响因素的研究[J]. 信息记录材料, 2019, 20(9): 4-7. |
WANG L. Study on the factors affecting the acupuncture experiment of lithium ion battery[J]. Information Recording Materials, 2019, 20(9): 4-7. | |
24 | 谭春华, 符泽卫, 朱冠华, 等. 锂离子电池针刺热失控仿真研究[J]. 电源技术, 2018, 42(11): 1604-1607. |
TAN C H, FU Z W, ZHU G H, et al. Simulation study on thermal runaway of Li-ion battery after nail penetration[J]. Chinese Journal of Power Sources, 2018, 42(11): 1604-1607. | |
25 | ABAZA A, FERRARI S, WONG H K, et al. Experimental study of internal and external short circuits of commercial automotive pouch lithium-ion cells[J]. Journal of Energy Storage, 2018, 16: 211-217. |
26 | XU J J, MEI W X, ZHAO C P, et al. Study on thermal runaway mechanism of 1000 mAh lithium ion pouch cell during nail penetration[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(2): 273-284. |
27 | YOKOSHIMA T, MUKOYAMA D, MAEDA F, et al. Operando analysis of thermal runaway in lithium ion battery during nail-penetration test using an X-ray inspection system[J]. Journal of the Electrochemical Society, 2019, 166(6): A1243-A1250. |
28 | ZHAO R, LIU J, GU J J. A comprehensive study on Li-ion battery nail penetrations and the possible solutions[J]. Energy, 2017, 123: 392-401. |
29 | YAMANAKA T, TAKAGISHI Y, TOZUKA Y, et al. Modeling lithium ion battery nail penetration tests and quantitative evaluation of the degree of combustion risk[J]. Journal of Power Sources, 2019, 416: 132-140. |
30 | KIM J, MALLARAPU A, SANTHANAGOPALAN S. Transport processes in a Li-ion cell during an internal short-circuit[J]. Journal of the Electrochemical Society, 2020, 167(9): doi: 10.1149/1945-7111/ab995d. |
31 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
32 | 王帅林, 盛雷, 齐丽娜, 等. 大型软包锂离子电池的热物性实验研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1986-1992. |
WANG S L, SHENG L, QI L N, et al. Experimental investigation on thermophysical parameters of large-format pouch lithium-ion battery[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(10): 1986-1992. | |
33 | RAMADASS P, FANG W F, ZHANG Z M. Study of internal short in a Li-ion cell I. Test method development using infra-red imaging technique[J]. Journal of Power Sources, 2014, 248: 769-776. |
34 | AIELLO L, GSTREIN G, ERKER S, et al. Optimized nail for penetration test on lithium-ion cells and its utilization for the validation of a multilayer electro-thermal model[J]. Batteries, 2022, 8(4): 32. |
35 | CHEN M J, YE Q, SHI C M, et al. New insights into nail penetration of Li-ion batteries: Effects of heterogeneous contact resistance[J]. Batteries & Supercaps, 2019, 2(10): 874-881. |
36 | NAM K W, BAK S M, HU E Y, et al. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 1047-1063. |
37 | KYUNG-WAN N, SEONG-MIN B, ENYUAN H, et al. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries[J]. Advanced Function Material, 2013, 23: 1047-1063. |
38 | YANG X Q, SUN X, MCBREEN J. New findings on the phase transitions in Li1- xNiO2: in situ synchrotron X-ray diffraction studies[J]. Electrochemistry Communications, 1999, 1(6): 227-232. |
39 | LI W, REIMERS J N, DAHN J R. In situ X-ray diffraction and electrochemical studies of Li1- xNiO2[J]. Solid State Ionics, 1993, 67(1/2): 123-130. |
40 | YOON W S, CHUNG K Y, MCBREEN J, et al. A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD[J]. Electrochemistry Communications, 2006, 8(8): 1257-1262. |
41 | TIAN C X, XU Y H, NORDLUND D, et al. Charge heterogeneity and surface chemistry in polycrystalline cathode materials[J]. Joule, 2018, 2(3): 464-477. |
[1] | Xuxu TANG, Ting XU, Deren CHU. Study on the failure mechanism and thermal safety of nickel-cobalt-manganese ternary lithium-ion cells after float-charging at different voltages [J]. Energy Storage Science and Technology, 2024, 13(6): 2044-2053. |
[2] | Xiaofei ZHEN, Beibei WANG, Xiaohu ZHANG, Yiming SUN, Wenjiong CAO, Ti DONG. Study on the generation and diffusion law of thermal runaway gas in lithium battery energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1986-1994. |
[3] | Baoquan LIU, Xiaoyu CAO. Accurate typical gas detection of lithium battery in early thermal runaway period [J]. Energy Storage Science and Technology, 2024, 13(6): 1995-2009. |
[4] | Guobin ZHONG, Xin YAO, Yongchao LIU, Qian HOU, Hongfa XIANG. Challenges and prospects of high-safety composite separators for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1794-1806. |
[5] | Ziwei TANG, Yupu SHI, Yuchan ZHANG, Yibo ZHOU, Huiling DU. Prediction of lithium-ion battery capacity degradation trajectory based on Informer [J]. Energy Storage Science and Technology, 2024, 13(5): 1658-1666. |
[6] | Nana FENG, Ming YANG, Zhouli HUI, Ruijie WANG, Hongyang NING. Prediction of the remaining useful life of lithium batteries based on Antlion optimization Gaussian process regression [J]. Energy Storage Science and Technology, 2024, 13(5): 1643-1652. |
[7] | Gaoqi LIAN, Min YE, Qiao WANG, Yan LI, Yuchuan MA, Yiding SUN, Penghui DU. State-of-charge estimation of lithium-ion batteries in rapid temperature-varying environments based on improved battery model and optimized adaptive cubature Kalman filter [J]. Energy Storage Science and Technology, 2024, 13(5): 1667-1676. |
[8] | Xinbing XIE, Kaiyue YANG, Xiaozhong DU. Mechanical behavior and structure of lithium-ion battery electrode calendering process [J]. Energy Storage Science and Technology, 2024, 13(5): 1699-1706. |
[9] | Lin HE, Jiangyan LIU, Bin LIU, Kuining LI, Shuai DAI. Generalized impact of data distribution diversity on SOC prediction of lithium battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1677-1687. |
[10] | Yalu HAN, Yige CHEN, Huifang DI, Jiehuan LIN, Zhenbing WANG, Yang ZHANG, Fangyuan SU, Chengmeng CHEN. Research progress on failure of lithium-ion batteries under different service conditions [J]. Energy Storage Science and Technology, 2024, 13(4): 1338-1349. |
[11] | Yuanhui TANG, Boxing YUAN, Jie LI, Yunlong ZHANG. Study on the safety of cylindrical lithium-ion batteries under nail penetration conditions [J]. Energy Storage Science and Technology, 2024, 13(4): 1326-1334. |
[12] | Ge LI, Xiangdong KONG, Yuedong SUN, Fei CHEN, Yuebo YUAN, Xuebing HAN, Yuejiu ZHENG. Method for sorting the dynamic characteristics of lithium-ion battery consistency based on production line big data [J]. Energy Storage Science and Technology, 2024, 13(4): 1188-1196. |
[13] | Zhiyou MAO, Xiaoyu NING, Peipei ZHANG, Bei ZHANG, Jiayuan XIANG. Effect of separators on thermal runaway performance for Li-ion battery [J]. Energy Storage Science and Technology, 2024, 13(4): 1154-1158. |
[14] | Ruizi WANG, Xunliang LIU, Ruifeng DOU, Wenning ZHOU, Juan FANG. A comparative study on diffusion-induced stress and thermal stress during discharge of ternary soft pack lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(4): 1128-1141. |
[15] | Yuting WANG, Qiutong LI, Yiming HU, Xin GUO. Techniques for monitoring internal signals of lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1253-1265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||